Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Adv Neurobiol ; 32: 353-384, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37480466

RESUMO

Military personnel during combat or peacekeeping operations are exposed to extreme climates of hot or cold environments for longer durations. Spinal cord injury is quite common in military personnel following central nervous system (CNS) trauma indicating a possibility of altered pathophysiological responses at different ambient temperatures. Our previous studies show that the pathophysiology of brain injury is exacerbated in animals acclimated to cold (5 °C) or hot (30 °C) environments. In these diverse ambient temperature zones, trauma exacerbated oxidative stress generation inducing greater blood-brain barrier (BBB) permeability and cell damage. Extracts of Ginkgo biloba EGb-761 and BN-52021 treatment reduces brain pathology following heat stress. This effect is further improved following TiO2 nanowired delivery in heat stress in animal models. Several studies indicate the role of EGb-761 in attenuating spinal cord induced neuronal damages and improved functional deficit. This is quite likely that these effects are further improved following nanowired delivery of EGb-761 and BN-52021 with cerebrolysin-a balanced composition of several neurotrophic factors and peptide fragments in spinal cord trauma. In this review, TiO2 nanowired delivery of EGb-761 and BN-52021 with nanowired cerebrolysin is examined in a rat model of spinal cord injury at cold environment. Our results show that spinal cord injury aggravates cord pathology in cold-acclimated rats and nanowired delivery of EGb-761 and BN-52021 with cerebrolysin significantly induced superior neuroprotection, not reported earlier.


Assuntos
Bilobalídeos , Ginkgo biloba , Fármacos Neuroprotetores , Traumatismos da Medula Espinal , Animais , Ratos , Temperatura Baixa , Sistemas de Liberação de Medicamentos , Nanofios , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/fisiopatologia , China
2.
Adv Neurobiol ; 32: 385-416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37480467

RESUMO

Curcumin is a well-known antioxidant used as traditional medicine in China and India since ages to treat variety of inflammatory ailments as a food supplement. Curcumin has antitumor properties with neuroprotective effects in Alzheimer's disease. Curcumin elevates brain-derived neurotrophic factor (BDNF) and dopamine (DA) levels in the brain indicating its role in substance abuse. Methamphetamine (METH) is one of the most abused substances in the world that induces profound neurotoxicity by inducing breakdown of the blood-brain barrier (BBB), vasogenic edema and cellular injuries. However, influence of curcumin on METH-induced neurotoxicity is still not well investigated. In this investigation, METH neurotoxicity and neuroprotective effects of curcumin nanodelivery were examined in a rat model. METH (20 mg/kg, i.p.) neurotoxicity is evident 4 h after its administration exhibiting breakdown of BBB to Evans blue albumin in the cerebral cortex, hippocampus, cerebellum, thalamus and hypothalamus associated with vasogenic brain edema as seen measured using water content in all these regions. Nissl attaining exhibited profound neuronal injuries in the regions of BBB damage. Normal curcumin (50 mg/kg, i.v.) 30 min after METH administration was able to reduce BBB breakdown and brain edema partially in some of the above brain regions. However, TiO2 nanowired delivery of curcumin (25 mg/kg, i.v.) significantly attenuated brain edema, neuronal injuries and the BBB leakage in all the brain areas. BDNF level showed a significant higher level in METH-treated rats as compared to saline-treated METH group. Significantly enhanced DA levels in METH-treated rats were also observed with nanowired delivery of curcumin. Normal curcumin was able to slightly elevate DA and BDNF levels in the selected brain regions. Taken together, our observations are the first to show that nanodelivery of curcumin induces superior neuroprotection in METH neurotoxicity probable by enhancing BDNF and DA levels in the brain, not reported earlier.


Assuntos
Edema Encefálico , Curcumina , Metanfetamina , Fármacos Neuroprotetores , Animais , Ratos , Fator Neurotrófico Derivado do Encéfalo , Dopamina , Metanfetamina/toxicidade , Fármacos Neuroprotetores/farmacologia , Nanofios/química , Sistemas de Liberação de Fármacos por Nanopartículas/química , Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia
3.
Prog Brain Res ; 265: 249-315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34560923

RESUMO

Military personnel often exposed to high summer heat are vulnerable to heat stroke (HS) resulting in abnormal brain function and mental anomalies. There are reasons to believe that leakage of the blood-brain barrier (BBB) due to hyperthermia and development of brain edema could result in brain pathology. Thus, exploration of suitable therapeutic strategies is needed to induce neuroprotection in HS. Extracts of Gingko Biloba (EGb-761) is traditionally used in a variety of mental disorders in Chinese traditional medicine since ages. In this chapter, effects of TiO2 nanowired EGb-761 and BN-52021 delivery to treat brain pathologies in HS is discussed based on our own investigations. We observed that TiO2 nanowired delivery of EGb-761 or TiO2 BN-52021 is able to attenuate more that 80% reduction in the brain pathology in HS as compared to conventional drug delivery. The functional outcome after HS is also significantly improved by nanowired delivery of EGb-761 and BN-52021. These observations are the first to suggest that nanowired delivery of EGb-761 and BN-52021 has superior therapeutic effects in HS not reported earlier. The clinical significance in relation to the military medicine is discussed.


Assuntos
Bilobalídeos , Golpe de Calor , Fármacos Neuroprotetores , China , Ginkgo biloba , Ginkgolídeos , Humanos , Lactonas , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais
4.
Prog Brain Res ; 258: 1-77, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33223033

RESUMO

Sleep deprivation (SD) is common in military personnel engaged in combat operations leading to brain dysfunction. Military personnel during acute or chronic SD often prone to traumatic brain injury (TBI) indicating the possibility of further exacerbating brain pathology. Several lines of evidence suggest that in both TBI and SD alpha-melanocyte-stimulating hormone (α-MSH) and brain-derived neurotrophic factor (BDNF) levels decreases in plasma and brain. Thus, a possibility exists that exogenous supplement of α-MSH and/or BDNF induces neuroprotection in SD compounded with TBI. In addition, mesenchymal stem cells (MSCs) are very portent in inducing neuroprotection in TBI. We examined the effects of concussive head injury (CHI) in SD on brain pathology. Furthermore, possible neuroprotective effects of α-MSH, MSCs and neurotrophic factors treatment were explored in a rat model of SD and CHI. Rats subjected to 48h SD with CHI exhibited higher leakage of BBB to Evans blue and radioiodine compared to identical SD or CHI alone. Brain pathology was also exacerbated in SD with CHI group as compared to SD or CHI alone together with a significant reduction in α-MSH and BDNF levels in plasma and brain and enhanced level of tumor necrosis factor-alpha (TNF-α). Exogenous administration of α-MSH (250µg/kg) together with MSCs (1×106) and cerebrolysin (a balanced composition of several neurotrophic factors and active peptide fragments) (5mL/kg) significantly induced neuroprotection in SD with CHI. Interestingly, TiO2 nanowired delivery of α-MSH (100µg), MSCs, and cerebrolysin (2.5mL/kg) induced enhanced neuroprotection with higher levels of α-MSH and BDNF and decreased the TNF-α in SD with CHI. These observations are the first to show that TiO2 nanowired administration of α-MSH, MSCs and cerebrolysin induces superior neuroprotection following SD in CHI, not reported earlier. The clinical significance of our findings in light of the current literature is discussed.


Assuntos
Traumatismos Craniocerebrais , Células-Tronco Mesenquimais , Aminoácidos , Animais , Radioisótopos do Iodo , Neuroproteção , Ratos , Privação do Sono , Titânio , alfa-MSH
5.
Neurobiol Dis ; 121: 252-262, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30296616

RESUMO

Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been widely associated to beneficial effect over different neurodegenerative diseases. In the present study, we tested the potential therapeutic effect of docohexanoic acid (DHA) and its hydroxylated derivate, DHAH, in a partial lesion model of Parkinson's disease (PD). One month before and four months after the striatal lesion with 6-OHDA was made, the animals were daily treated with DHA (50 mg/kg), DHAH (50 mg/kg), vehicle or saline, by intragastric administration. Animal groups under n-3 PUFA treatments exhibited a trend to improve in amphetamine-induced rotations and cylinder test. The beneficial effect seen in behavioral studies were confirmed with TH immunostaining. TH+ fibers and TH+ neurons increased in the experimental groups treated with both n-3 PUFAs, DHA and DHAH. Moreover, the n-3 PUFAs administration decreased the astrogliosis and microgliosis, in both the striatum and substantia nigra (SN), with a higher decrease of GFAP+ and Iba-1+ cells for the DHAH treated group. This experimental group also revealed a positive effect on Nrf2 pathway regulation, decreasing the positive Nrf2 immmunostaining in the striatum and SN, which revealed a potential antioxidant effect of this compound. Taking together, these data suggest a positive effect of n-3 PUFAs administration, and more concretely of DHAH, for PD treatment as it exhibited positive results on dopaminergic system, neuroinflammation and oxidative stress.


Assuntos
Corpo Estriado/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Ácidos Graxos Ômega-3/administração & dosagem , Neuroglia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/metabolismo , Anfetamina/administração & dosagem , Animais , Antioxidantes/administração & dosagem , Corpo Estriado/metabolismo , Dopamina/metabolismo , Dopaminérgicos/administração & dosagem , Neurônios Dopaminérgicos/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Neuroglia/metabolismo , Oxidopamina/administração & dosagem , Doença de Parkinson/prevenção & controle , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/metabolismo
6.
Mol Neurobiol ; 52(2): 1043-53, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26108181

RESUMO

The possibility that ubiquitin expression is altered in cardiac arrest-associated neuropathology was examined in a porcine model using immunohistochemical and biochemical methods. Our observations show that cardiac arrest induces progressive increase in ubiquitin expression in the cortex and hippocampus in a selective and specific manner as compared to corresponding control brains using enzyme-linked immunoassay technique (enzyme-linked immunosorbent assay (ELISA)). Furthermore, immunohistochemical studies showed ubiquitin expression in the neurons exhibiting immunoreaction in the cytoplasm and karyoplasm of distorted or damaged cells. Separate Nissl and ubiquitin staining showed damaged and distorted neurons and in the same cortical region ubiquitin expression indicating that ubiquitin expression after cardiac arrest represents dying neurons. The finding that methylene blue treatment markedly induced neuroprotection following identical cardiac arrest and reduced ubiquitin expression strengthens this view. Taken together, our observations are the first to show that cardiac arrest enhanced ubiquitin expression in the brain that is related to the magnitude of neuronal injury and the finding that methylene blue reduced ubiquitin expression points to its role in cell damage, not reported earlier.


Assuntos
Barreira Hematoencefálica , Córtex Cerebral/patologia , Parada Cardíaca/metabolismo , Hipocampo/patologia , Proteínas do Tecido Nervoso/biossíntese , Neurônios/metabolismo , Ubiquitina/biossíntese , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Reanimação Cardiopulmonar , Córtex Cerebral/metabolismo , Regulação da Expressão Gênica , Parada Cardíaca/tratamento farmacológico , Parada Cardíaca/patologia , Parada Cardíaca/terapia , Hipocampo/metabolismo , Azul de Metileno/farmacologia , Azul de Metileno/uso terapêutico , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Distribuição Aleatória , Albumina Sérica/análise , Sus scrofa , Suínos , Tálamo/metabolismo , Tálamo/patologia , Ubiquitina/genética , Regulação para Cima
7.
J Nanosci Nanotechnol ; 14(1): 577-95, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24730284

RESUMO

Functionalized Magnetic Iron Oxide Nanoparticles (FMIONPs) are being explored for the development of various biomedical applications, e.g., cancer chemotherapy and/or several other radiological or diagnostic purposes. However, the effects of these NPs per se on the central nervous system (CNS) injury or repair are not well known. This review deals with different aspects of FMIONPs in relation to brain function based on the current literature as well as our own investigation in animal models of CNS injuries. It appears that FMIONPs are innocuous when administered intravenously within the CNS under normal conditions. However, abnormal reactions to FMIONPs in the brain or spinal cord could be seen if they are combined with CNS injuries e.g., hyperthermia or traumatic insults to the brain or spinal cord. Thus, administration of FMIONPs in vivo following whole body hyperthermia (WBH) or a focal spinal cord injury (SCI) exacerbates cellular damage. Since FMIONPs could help in diagnostic purposes or enhance the biological effects of radiotherapy/chemotherapy it is likely that these NPs may have some adverse reaction as well under disease condition. Thus, under such situation, adjuvant therapy e.g., Cerebrolysin (Ever NeuroPharma, Austria), a suitable combination of several neurotrophic factors and active peptide fragments are the need of the hour to contain such cellular damages caused by the FMIONPs in vivo. Our observations show that co-administration of Cerebrolysin prevents the FMIONPs induced pathologies associated with CNS injuries. These observations support the idea that FMIONPs are safe for the CNS in disease conditions when co-administered with cerebrolysin. This indicates that cerebrolysin could be used as an adjunct therapy to prevent cellular damages in disease conditions where the use of FMIONPs is required for better efficacy e.g., cancer treatment.


Assuntos
Aminoácidos/administração & dosagem , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/prevenção & controle , Nanopartículas de Magnetita/efeitos adversos , Nanocápsulas/efeitos adversos , Nanocápsulas/uso terapêutico , Regeneração Nervosa/efeitos dos fármacos , Aminoácidos/química , Animais , Interações Medicamentosas , Humanos , Nanopartículas de Magnetita/uso terapêutico , Nanocápsulas/ultraestrutura , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA