Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 189(4): 2001-2014, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35522031

RESUMO

Castor bean (Ricinus communis) seed oil (triacylglycerol [TAG]) is composed of ∼90% of the industrially important ricinoleoyl (12-hydroxy-9-octadecenoyl) groups. Here, phosphatidylcholine (PC):diacylglycerol (DAG) cholinephosphotransferase (PDCT) from castor bean was biochemically characterized and compared with camelina (Camelina sativa) PDCT. DAGs with ricinoleoyl groups were poorly used by Camelina PDCT, and their presence inhibited the utilization of DAG with "common" acyl groups. In contrast, castor PDCT utilized DAG with ricinoleoyl groups similarly to DAG with common acyl groups and showed a 10-fold selectivity for DAG with one ricinoleoyl group over DAG with two ricinoleoyl groups. Castor DAG acyltransferase2 specificities and selectivities toward different DAG and acyl-CoA species were assessed and shown to not acylate DAG without ricinoleoyl groups in the presence of ricinoleoyl-containing DAG. Eighty-five percent of the DAG species in microsomal membranes prepared from developing castor endosperm lacked ricinoleoyl groups. Most of these species were predicted to be derived from PC, which had been formed by PDCT in exchange with DAG with one ricinoleoyl group. A scheme of the function of PDCT in castor endosperm is proposed where one ricinoleoyl group from de novo-synthesized DAG is selectivity transferred to PC. Nonricinoleate DAG is formed and ricinoleoyl groups entering PC are re-used either in de novo synthesis of DAG with two ricinoleoyl groups or in direct synthesis of triricinoleoyl TAG by PDAT. The PC-derived DAG is not used in TAG synthesis but is proposed to serve as a substrate in membrane lipid biosynthesis during oil deposition.


Assuntos
Brassicaceae , Ricinus communis , Óleo de Rícino , Diacilglicerol Colinofosfotransferase , Diglicerídeos , Fosfatidilcolinas , Ricinus/genética , Sementes , Triglicerídeos
2.
Planta ; 249(5): 1285-1299, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30610363

RESUMO

MAIN CONCLUSION: In vivo and in vitro analyses of Euphorbiaceae species' triacylglycerol assembly enzymes substrate selectivity are consistent with the co-evolution of seed-specific unusual fatty acid production and suggest that many of these genes will be useful for biotechnological production of designer oils. Many exotic Euphorbiaceae species, including tung tree (Vernicia fordii), castor bean (Ricinus communis), Bernardia pulchella, and Euphorbia lagascae, accumulate unusual fatty acids in their seed oils, many of which have valuable properties for the chemical industry. However, various adverse plant characteristics including low seed yields, production of toxic compounds, limited growth range, and poor resistance to abiotic stresses have limited full agronomic exploitation of these plants. Biotechnological production of these unusual fatty acids (UFA) in high yielding non-food oil crops would provide new robust sources for these valuable bio-chemicals. Previous research has shown that expression of the primary UFA biosynthetic gene alone is not enough for high-level accumulation in transgenic seed oils; other genes must be included to drive selective UFA incorporation into oils. Here, we use a series of in planta molecular genetic studies and in vitro biochemical measurements to demonstrate that lysophosphatidic acid acyltransferases from two Euphorbiaceae species have high selectivity for incorporation of their respective unusual fatty acids into the phosphatidic acid intermediate of oil biosynthesis. These results are consistent with the hypothesis that unusual fatty acid accumulation arose in part via co-evolution of multiple oil biosynthesis and assembly enzymes that cooperate to enhance selective fatty acid incorporation into seed oils over that of the common fatty acids found in membrane lipids.


Assuntos
Aciltransferases/metabolismo , Euphorbiaceae/enzimologia , Euphorbiaceae/metabolismo , Ácidos Graxos/metabolismo , Óleos de Plantas/metabolismo , Sementes/enzimologia , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Ricinoleicos/metabolismo
3.
Plant Cell Rep ; 35(10): 2055-63, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27313135

RESUMO

KEY MESSAGE: Simultaneous RNAi silencing of the FAD2 and FAE1 genes in the wild species Lepidium campestre improved the oil quality with 80 % oleic acid content compared to 11 % in wildtype. Field cress (Lepidium campestre) is a wild biennial species within the Brassicaceae family with desirable agronomic traits, thus being a good candidate for domestication into a new oilseed and catch crop. However, it has agronomic traits that need to be improved before it can become an economically viable species. One of such traits is the seed oil composition, which is not desirable either for food use or for industrial applications. In this study, we have, through metabolic engineering, altered the seed oil composition in field cress into a premium oil for food processing, industrial, or chemical industrial applications. Through seed-specific RNAi silencing of the field cress fatty acid desaturase 2 (FAD2) and fatty acid elongase 1 (FAE1) genes, we have obtained transgenic lines with an oleic acid content increased from 11 % in the wildtype to over 80 %. Moreover, the oxidatively unstable linolenic acid was decreased from 40.4 to 2.6 %, and the unhealthy erucic acid was reduced from 20.3 to 0.1 %. The high oleic acid trait has been kept stable for three generations. This shows the possibility to use field cress as a platform for genetic engineering of oil compositions tailor-made for its end uses.


Assuntos
Inativação Gênica , Lepidium/metabolismo , Ácido Oleico/metabolismo , Southern Blotting , Segregação de Cromossomos/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Conformação Molecular , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Especificidade da Espécie , Transformação Genética
4.
Plant Biotechnol J ; 12(2): 193-203, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24119222

RESUMO

Erucic acid is a valuable industrial fatty acid with many applications. The main producers of this acid are today high erucic rapeseed (Brassica napus) and mustard (Brassica juncea), which have 45%-50% of erucic acid in their seed oils. Crambe abyssinica is an alternative promising producer of this acid as it has 55%-60% of erucic acid in its oil. Through genetic modification (GM) of three genes, we have previously increased the level of erucic acid to 71% (68 mol%) in Crambe seed oil. In this study, we further investigated different aspects of oil biosynthesis in the developing GM Crambe seeds in comparison with wild-type (Wt) Crambe, rapeseed and safflower (Carthamus tinctorius). We show that Crambe seeds have very low phosphatidylcholine-diacylglycerol interconversion, suggesting it to be the main reason why erucic acid is limited in the membrane lipids during oil biosynthesis. We further show that GM Crambe seeds have slower seed development than Wt, accompanied by slower oil accumulation during the first 20 days after flowering (DAF). Despite low accumulation of erucic acid during early stages of GM seed development, nearly 86 mol% of all fatty acids accumulated between 27 and 50 DAF was erucic acid, when 40% of the total oil is laid down. Likely bottlenecks in the accumulation of erucic acid during early stages of GM Crambe seed development are discussed.


Assuntos
Crambe (Planta)/genética , Ácidos Erúcicos/metabolismo , Óleos de Plantas/metabolismo , Sementes/metabolismo , Acilação , Brassica/genética , Brassica/metabolismo , Brassica rapa/genética , Brassica rapa/metabolismo , Radioisótopos de Carbono/análise , Clorofila/metabolismo , Crambe (Planta)/crescimento & desenvolvimento , Crambe (Planta)/metabolismo , Ácidos Graxos/metabolismo , Engenharia Genética , Glicerol/análise , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/crescimento & desenvolvimento , Fatores de Tempo
5.
Plant Physiol ; 150(3): 1248-59, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19429607

RESUMO

Cytosolic NADPH can be directly oxidized by a calcium-dependent NADPH dehydrogenase, NDB1, present in the plant mitochondrial electron transport chain. However, little is known regarding the impact of modified cytosolic NADPH reduction levels on growth and metabolism. Nicotiana sylvestris plants overexpressing potato (Solanum tuberosum) NDB1 displayed early bolting, whereas sense suppression of the same gene led to delayed bolting, with consequential changes in flowering time. The phenotype was dependent on light irradiance but not linked to any change in biomass accumulation. Whereas the leaf NADPH/NADP(+) ratio was unaffected, the stem NADPH/NADP(+) ratio was altered following the genetic modification and strongly correlated with the bolting phenotype. Metabolic profiling of the stem showed that the NADP(H) change affected relatively few, albeit central, metabolites, including 2-oxoglutarate, glutamate, ascorbate, sugars, and hexose-phosphates. Consistent with the phenotype, the modified NDB1 level also affected the expression of putative floral meristem identity genes of the SQUAMOSA and LEAFY types. Further evidence for involvement of the NADPH redox in stem development was seen in the distinct decrease in the stem apex NADPH/NADP(+) ratio during bolting. Additionally, the potato NDB1 protein was specifically detected in mitochondria, and a survey of its abundance in major organs revealed that the highest levels are found in green stems. These results thus strongly suggest that NDB1 in the mitochondrial electron transport chain can, by modifying cell redox levels, specifically affect developmental processes.


Assuntos
Proteínas Mitocondriais/metabolismo , NADPH Desidrogenase/metabolismo , Nicotiana/enzimologia , Oxirredução , Proteínas de Plantas/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Mitocondriais/genética , NADPH Desidrogenase/genética , Proteínas de Plantas/genética , Caules de Planta/enzimologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Solanum tuberosum/genética , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA