Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 61(12): 1213-1227, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35640071

RESUMO

Inositol pyrophosphates are signaling molecules containing at least one phosphoanhydride bond that regulate a wide range of cellular processes in eukaryotes. With a cyclic array of phosphate esters and diphosphate groups around myo-inositol, these molecular messengers possess the highest charge density found in nature. Recent work deciphering inositol pyrophosphate biosynthesis in Arabidopsis revealed important functions of these messengers in nutrient sensing, hormone signaling, and plant immunity. However, despite the rapid hydrolysis of these molecules in plant extracts, very little is known about the molecular identity of the phosphohydrolases that convert these messengers back to their inositol polyphosphate precursors. Here, we investigate whether Arabidopsis Plant and Fungi Atypical Dual Specificity Phosphatases (PFA-DSP1-5) catalyze inositol pyrophosphate phosphohydrolase activity. We find that recombinant proteins of all five Arabidopsis PFA-DSP homologues display phosphohydrolase activity with a high specificity for the 5-ß-phosphate of inositol pyrophosphates and only minor activity against the ß-phosphates of 4-InsP7 and 6-InsP7. We further show that heterologous expression of Arabidopsis PFA-DSP1-5 rescues wortmannin sensitivity and deranged inositol pyrophosphate homeostasis caused by the deficiency of the PFA-DSP-type inositol pyrophosphate phosphohydrolase Siw14 in yeast. Heterologous expression in Nicotiana benthamiana leaves provided evidence that Arabidopsis PFA-DSP1 also displays 5-ß-phosphate-specific inositol pyrophosphate phosphohydrolase activity in planta. Our findings lay the biochemical basis and provide the genetic tools to uncover the roles of inositol pyrophosphates in plant physiology and plant development.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Difosfatos/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Fosfatos de Inositol/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
Methods Mol Biol ; 2295: 365-378, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34047987

RESUMO

The phosphate esters of myo-inositol (Ins) occur ubiquitously in biology. These molecules exist as soluble or membrane-resident derivatives and regulate a plethora of cellular functions including phosphate homeostasis, DNA repair, vesicle trafficking, metabolism, cell polarity, tip-directed growth, and membrane morphogenesis. Phosphorylation of all inositol hydroxyl groups generates phytic acid (InsP6), the most abundant inositol phosphate present in eukaryotic cells. However, phytic acid is not the most highly phosphorylated naturally occurring inositol phosphate. Specialized small molecule kinases catalyze the formation of the so-called myo-inositol pyrophosphates (PP-InsPs), such as InsP7 and InsP8. These molecules are characterized by one or several "high-energy" diphosphate moieties and are ubiquitous in eukaryotic cells. In plants, PP-InsPs play critical roles in immune responses and nutrient sensing. The detection of inositol derivatives in plants is challenging. This is particularly the case for inositol pyrophosphates because diphospho bonds are labile in plant cell extracts due to high amounts of acid phosphatase activity. We present two steady-state inositol labeling-based techniques coupled with strong anion exchange (SAX)-HPLC analyses that allow robust detection and quantification of soluble and membrane-resident inositol polyphosphates in plant extracts. These techniques will be instrumental to uncover the cellular and physiological processes controlled by these intriguing regulatory molecules in plants.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Fosfatos de Inositol/química , Resinas de Troca Aniônica/química , Ânions/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/metabolismo , Inositol/química , Fosfatos de Inositol/metabolismo , Fosfatidilinositóis/química , Fosforilação , Plantas/química , Plantas/metabolismo , Polifosfatos/química , Sementes/química , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA