Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 234: 116491, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37394168

RESUMO

The soil microbial diversity in the gangue accumulation area is severely stressed by a variety of heavy metals, while the influence of long-term recovery of herbaceous plants on the ecological structure of gangue-contaminated soil is to be explored. Therefore, we analysed the differences in physicochemical properties, elemental changes, microbial community structure, metabolites and expression of related pathways in soils in the 10- and 20-year herbaceous remediation areas of coal gangue. Our results showed that phosphatase, soil urease, and sucrase activities of gangue soils significantly increased in the shallow layer after herbaceous remediation. However, in zone T1 (10-year remediation zone), the contents of harmful elements, such as Thorium (Th; 1.08-fold), Arsenic (As; 0.78-fold), lead (Pb; 0.99-fold), and uranium (U; 0.77-fold), increased significantly, whereas the soil microbial abundance and diversity also showed a significant decreasing trend. Conversely, in zone T2 (20-year restoration zone), the soil pH significantly increased by 1.03- to 1.06-fold and soil acidity significantly improved. Moreover, the abundance and diversity of soil microorganisms increased significantly, the expression of carbohydrates in soil was significantly downregulated, and sucrose content was significantly negatively correlated with the abundance of microorganisms, such as Streptomyces. A significant decrease in heavy metals was observed in the soil, such as U (1.01- to 1.09-fold) and Pb (1.13- to 1.25-fold). Additionally, the thiamin synthesis pathway was inhibited in the soil of the T1 zone; the expression level of sulfur (S)-containing histidine derivatives (Ergothioneine) was significantly up-regulated by 0.56-fold in the shallow soil of the T2 zone; and the S content in the soil significantly reduced. Aromatic compounds were significantly up-regulated in the soil after 20 years of herbaceous plant remediation in coal gangue soil, and microorganisms (Sphingomonas) with significant positive correlations with benzene ring-containing metabolites, such as Sulfaphenazole, were identified.


Assuntos
Metais Pesados , Microbiota , Poluentes do Solo , Urânio , Carvão Mineral , Chumbo/toxicidade , Chumbo/análise , Metais Pesados/análise , Plantas , Solo/química , Metaboloma , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
2.
Environ Sci Technol ; 57(13): 5305-5316, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36952228

RESUMO

The potential ecological risks caused by entering radioactive wastewater containing tritium and carbon-14 into the sea require careful evaluation. This study simulated seawater's tritium and carbon-14 pollution and analyzed the effects on the seawater and sediment microenvironments. Tritium and carbon-14 pollution primarily altered nitrogen and phosphorus metabolism in the seawater environment. Analysis by 16S rRNA sequencing showed changes in the relative abundance of microorganisms involved in carbon, nitrogen, and phosphorus metabolism and organic matter degradation in response to tritium and carbon-14 exposure. Metabonomics and metagenomic analysis showed that tritium and carbon-14 exposure interfered with gene expression involving nucleotide and amino acid metabolites, in agreement with the results seen for microbial community structure. Tritium and carbon-14 exposure also modulated the abundance of functional genes involved in carbohydrate, phosphorus, sulfur, and nitrogen metabolic pathways in sediments. Tritium and carbon-14 pollution in seawater adversely affected microbial diversity, metabolic processes, and the abundance of nutrient-cycling genes. These results provide valuable information for further evaluating the risks of tritium and carbon-14 in marine environments.


Assuntos
Bactérias , Microbiota , Radioisótopos de Carbono/metabolismo , Trítio/metabolismo , Bactérias/genética , Bactérias/metabolismo , RNA Ribossômico 16S/genética , Microbiota/genética , Água do Mar , Redes e Vias Metabólicas , Carbono/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Sedimentos Geológicos/química
3.
J Environ Sci (China) ; 120: 9-17, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35623776

RESUMO

Human industrial activities have caused environmental uranium (U) pollution, resulting in uranium(VI) had radiotoxicity and chemical toxicity. Here, a cellulase-producing Penicillium fungus was screened and characterized by X-ray fluorescence (XRF), and Fourier transform infrared reflection (FT-IR), as well as by GC/MS metabolomics analysis, to study the response to uranium(VI) stress. The biomass of Penicillium decreased after exposure to 100 mg/L U. Uranium combined with carboxyl groups, amino groups, and phosphate groups to form uranium mineralized deposits on the surface of this fungal strain. The α-activity concentration of uranium in the strain was 2.57×106 Bq/kg, and the ß-activity concentration was 2.27×105 Bq/kg. Metabolomics analysis identified 118 different metabolites, as well as metabolic disruption of organic acids and derivatives. Further analysis showed that uranium significantly affected the metabolism of 9 amino acids in Penicillium. These amino acids were related to the TCA cycle and ABC transporter. At the same time, uranium exhibited nucleotide metabolism toxicity to Penicillium. This study provides an in-depth understanding of the uranium tolerance mechanism of Penicillium and provides a theoretical basis for Penicillium to degrade hyper-enriched plants.


Assuntos
Celulase , Penicillium , Urânio , Aminoácidos , Humanos , Metabolômica , Penicillium/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Urânio/química
4.
Microb Ecol ; 84(2): 439-450, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34554284

RESUMO

This research provides a complete degradation scheme for acrylic copolymer/cellulose acetate butyrate peelable decontamination films. This study analyzed the removal efficiency of uranium by peelable decontamination film. More importantly, the degradability of the films was evaluated by a combined treatment with UV radiation and microbial biodegradation. The results showed that UV radiation would rupture the surface of the decontamination films, which leaded the weight-average molecular weight decreased by 55.3% and number-average molecular weight decreased by 75.83%. Additionally, the microbial flora induced light-degradable decontamination film weight-average molecular weight and number-average molecular weight decreased by 9.3% and 30.73%, respectively. 16S rRNA microbial diversity analysis indicated that Pantoea, Xylella, Cronobacter, and Olivibacter were the major degrading bacteria genera. Among them, 4 key strains that can be stripped of decontamination films have been isolated and identified from the dominant degrading bacteria group. The results show that UV radiation combined with microbial flora can achieve rapid degradation of the decontamination films.


Assuntos
Urânio , Bactérias , Biodegradação Ambiental , Descontaminação , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Raios Ultravioleta , Urânio/metabolismo
5.
J Hazard Mater ; 409: 124997, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33421877

RESUMO

The purpose of this study was to reveal the accumulation and phytotoxicity mechanism of sweet potato (Ipomoea batatas L.) roots following exposure to toxic levels of uranium (U) and cadmium (Cd). We selected two accumulation-type sweet potato cultivars as experimental material. The varietal differences in U and Cd accumulation and physiological metabolism were analyzed by a hydroponic experiment. High concentrations of U and Cd inhibited the growth and development of sweet potato and damaged the microstructure of root. The roots were the main accumulating organs of U and Cd in both sweet potato. Root cell walls and vacuoles (soluble components) were the main distribution sites of U and Cd. The chemical forms of U in the two sweet potato varieties were insoluble and oxalate compounds, while Cd mainly combined with pectin and protein. U and Cd changed the normal mineral nutrition metabolism in the roots, and also significantly inhibited the photosynthetic metabolism of sweet potatoes. RNA-seq showed that the cell wall and plant hormone signal transduction pathways responded to either U or Cd toxicity in both varieties. The inorganic ion transporter and organic compound transporter in roots of both sweet potato varieties are sensitive to U and Cd toxicity.


Assuntos
Ipomoea batatas , Urânio , Cádmio/toxicidade , Reguladores de Crescimento de Plantas , Raízes de Plantas , Urânio/toxicidade
6.
J Hazard Mater ; 400: 123264, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-32947695

RESUMO

The purpose of this study was to reveal the absorption and interaction mechanisms of uranium (U) & cadmium (Cd) in corps. Purple sweet potato (Ipomoea batatas L.) was selected as the experimental material. The absorption behavior of U and Cd in this crop and the effects on mineral nutrition were analyzed in a pot experiment. The interactions between U and Cd in purple sweet potato were analyzed using UPLC-MS metabolome analysis. The pot experiment confirmed that the root tuber of the purple sweet potato had accumulated U (1.68-5.16 mg kg-1) and Cd (0.78-2.02 mg kg-1) and would pose a health risk if consumed. Both U and Cd significantly interfered with the mineral nutrient of the roots. Metabolomics revealed that a total of 4865 metabolites were identified in roots. 643 (419 up; 224 down), 526 (332 up; 194 down) and 634 (428 up; 214 down) different metabolites (DEMs) were identified in the U, Cd, and U + Cd exposure groups. Metabolic pathway analysis showed that U and Cd induced the expression of plant hormones (the first messengers) and cyclic nucleotides (cAMP and cGMP, second messengers) in cells and regulated the primary/secondary metabolism of roots to induce resistance to U and Cd toxicity.


Assuntos
Ipomoea batatas , Urânio , Cádmio/toxicidade , Cromatografia Líquida , Espectrometria de Massas em Tandem
7.
J Hazard Mater ; 398: 122997, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32512460

RESUMO

As a natural radionuclide, uranium (U) has obvious phytotoxicity, the purpose of this study is to unravel the response mechanism of U on photosynthetic and respiratory metabolism in plants. Therefore, 14-day-old Vicia faba seedlings were exposed to 0-25 µM U during 72 h. U effects on growth parameters, physiological parameters of plants, and potential phytotoxicity mechanism were investigated by physiological analysis, and metabolome and transcriptome data. U significantly inhibited photosynthesis and respiration of plants. In metabolome analysis, 53 metabolites related to carbohydrate metabolism were identified (13 up-regulated, 12 down-regulated). In transcriptome analysis, U significantly inhibited the expression of photoreactive electron transport chain (up: 0; down: 31), Calvin cycle (up: 0; down: 12) and photorespiration pathway genes (up: 0; down: 8). U significantly inhibited the expression of cellular energy metabolic pathways genes (e.g., glycolysis, TCA cycle, and oxidative phosphorylation pathways) (up 8, down 18). We concluded that U inhibited the expression of genes involved in the photosynthetic metabolic pathway, which caused the decrease of photosynthetic rate. Meanwhile, U inhibited the expression of the electron transport chain genes in the mitochondrial oxidative phosphorylation pathway, which leads to the abnormal energy supply of cells and the inhibition of root respiration rate.


Assuntos
Urânio , Vicia faba , Fotossíntese , Plântula , Transcriptoma , Urânio/toxicidade , Vicia faba/genética
8.
J Hazard Mater ; 386: 121437, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31899027

RESUMO

Uranium (U) is a nonessential element that is readily adsorbed and retained in plant roots, causing root damage plants, rather than being translocated to other parts of the plant. The phytotoxicity mechanism of U is poorly understood. In this study, Vicia faba, a model plant for toxicological research, was selected as experimental material to investigate the phytotoxicity mechanism of U. In this study, the effects of U on the growth and development, methonome, transcriptome and mineral nutrient metabolism of V. faba were studied under different U treatments (0-25 µM) by integrating metabolomics, transcriptomic, and mineral nutrient metabolism analysis techniques. The results showed that U accumulation in roots and aboveground parts reached 164.34-927.90 µg/pot, and 0.028-0.119 µg/pot, respectively. U was mainly accumulated in the cell wall of roots, which damaged the root microstructure and inhibited root growth and development. In terms of mineral nutrient metabolism, U treatment (0-25 µM) led to changes in mineral metabolic profiles of seedlings. In total, 612 different metabolites were identified in nontargeted metabolomics, including 309 significantly upregulated metabolites and 303 significantly downregulated metabolites. Using RNA-seq, 4974 differentially expressed genes (DEGs) were identified under the high-concentration U treatment (25 µM), including 1654 genes significantly upregulated genes and 3320 genes significantly downregulated genes. Metabolic pathway analysis showed that a high concentration of U led to an imbalance of mineral nutrient metabolism in plants and changes in the metabolism and transcriptome pathway of plants, including alterations in the function of plasmodesmata and auxin signal transduction pathway. The latter finding may potentially explain the toxic effect of U on plant roots.


Assuntos
Metabolômica , Minerais/metabolismo , Transcriptoma , Urânio/toxicidade , Vicia faba/efeitos dos fármacos , Parede Celular/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais , Vicia faba/genética , Vicia faba/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA