Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell Mol Life Sci ; 80(10): 310, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777592

RESUMO

Skeletal disorders are problematic aspects for the aquaculture industry as skeletal deformities, which affect most species of farmed fish, increase production costs and affect fish welfare. Following recent findings that show the presence of osteoactive compounds in marine organisms, we evaluated the osteogenic and mineralogenic potential of commercially available microalgae strains Skeletonema costatum and Tetraselmis striata CTP4 in several fish systems. Ethanolic extracts increased extracellular matrix mineralization in gilthead seabream (Sparus aurata) bone-derived cell cultures and promoted osteoblastic differentiation in zebrafish (Danio rerio) larvae. Long-term dietary exposure to both extracts increased bone mineralization in zebrafish and upregulated the expression of genes involved in bone formation (sp7, col1a1a, oc1, and oc2), bone remodeling (acp5a), and antioxidant defenses (cat, sod1). Extracts also improved the skeletal status of zebrafish juveniles by reducing the incidence of skeletal anomalies. Our results indicate that both strains of microalgae contain osteogenic and mineralogenic compounds, and that ethanolic extracts have the potential for an application in the aquaculture sector as dietary supplements to support fish bone health. Future studies should also identify osteoactive compounds and establish whether they can be used in human health to broaden the therapeutic options for bone erosive disorders such as osteoporosis.


Assuntos
Microalgas , Dourada , Animais , Humanos , Osteogênese , Peixe-Zebra , Suplementos Nutricionais , Dourada/genética , Dourada/metabolismo
2.
J Cell Biochem ; 122(10): 1556-1566, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34254709

RESUMO

Dual specificity phosphatase 4 (DUSP4), a member of the dual specificity phosphatase family, is responsible for the dephosphorylation and inactivation of ERK, JNK and p38, which are mitogen-activated protein kinases involved in cell proliferation, differentiation and apoptosis, but also in inflammation processes. Given its importance for cellular signalling, DUSP4 is subjected to a tight regulation and there is growing evidence that its expression is dysregulated in several tumours. However, the mechanisms underlying DUSP4 transcriptional regulation remain poorly understood. Here, we analysed the regulation of the human DUSP4 promoters 1 and 2, located upstream of exons 1 and 2, respectively, by the cancer-related transcription factors (TFs) STAT3, FOXA1, CTCF and YY1. The presence of binding sites for these TFs was predicted in both promoters through the in silico analysis of DUSP4, and their functionality was assessed through luciferase activity assays. Regulatory activity of the TFs tested was found to be promoter-specific. While CTCF stimulated the activity of promoter 2 that controls the transcription of variants 2 and X1, STAT3 stimulated the activity of promoter 1 that controls the transcription of variant 1. YY1 positively regulated both promoters, although to different extents. Through site-directed mutagenesis, the functionality of YY1 binding sites present in promoter 2 was confirmed. This study provides novel insights into the transcriptional regulation of DUSP4, contributing to a better comprehension of the mechanisms of its dysregulation observed in several types of cancer.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Fosfatases de Especificidade Dupla/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição YY1/metabolismo , Apoptose/fisiologia , Sítios de Ligação , Fator de Ligação a CCCTC/genética , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Fosfatases de Especificidade Dupla/metabolismo , Células HEK293 , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Regiões Promotoras Genéticas , Fator de Transcrição STAT3/genética , Fator de Transcrição YY1/genética
3.
Int J Mol Sci ; 21(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429051

RESUMO

Vitamin K (VK) is a key nutrient for several biological processes (e.g., blood clotting and bone metabolism). To fulfill VK nutritional requirements, VK action as an activator of pregnane X receptor (Pxr) signaling pathway, and as a co-factor of γ-glutamyl carboxylase enzyme, should be considered. In this regard, VK recycling through vitamin K epoxide reductases (Vkors) is essential and should be better understood. Here, the expression patterns of vitamin K epoxide reductase complex subunit 1 (vkorc1) and vkorc1 like 1 (vkorc1l1) were determined during the larval ontogeny of Senegalese sole (Solea senegalensis), and in early juveniles cultured under different physiological conditions. Full-length transcripts for ssvkorc1 and ssvkorc1l1 were determined and peptide sequences were found to be evolutionarily conserved. During larval development, expression of ssvkorc1 showed a slight increase during absence or low feed intake. Expression of ssvkorc1l1 continuously decreased until 24 h post-fertilization, and remained constant afterwards. Both ssvkors were ubiquitously expressed in adult tissues, and highest expression was found in liver for ssvkorc1, and ovary and brain for ssvkorc1l1. Expression of ssvkorc1 and ssvkorc1l1 was differentially regulated under physiological conditions related to fasting and re-feeding, but also under VK dietary supplementation and induced deficiency. The present work provides new and basic molecular clues evidencing how VK metabolism in marine fish is sensitive to nutritional and environmental conditions.


Assuntos
Linguados/crescimento & desenvolvimento , Linguados/metabolismo , Especificidade de Órgãos , Vitamina K Epóxido Redutases/metabolismo , Vitamina K/metabolismo , Sequência de Aminoácidos , Animais , Sequência Conservada , DNA Complementar/genética , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Linguados/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Filogenia , Vitamina K Epóxido Redutases/química , Vitamina K Epóxido Redutases/genética
4.
Biol Trace Elem Res ; 196(2): 629-638, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31828720

RESUMO

Trace minerals and vitamins are known modulators of bone metabolism, and dietary optimization of these components may improve skeletal development and reduce the occurrence of skeleton deformities in farmed fish. As for larval stages, mineral and water-soluble vitamin nutrition requirements are lacking in research efforts and knowledge is scarce. An in vitro cell system developed from gilthead seabream vertebra and capable of mineralization was used to assess the effect of B vitamins (thiamin and pyridoxine) and trace minerals (copper, manganese, and zinc in a sulfated and chelated form) on cell proliferation and extracellular matrix (ECM) mineralization. Dependent on dose, inhibition of cellular proliferation and/or cytotoxic effects was observed for all nutrients tested and LD50 values were determined: copper, 67.4-69.5 ppm; manganese, 20.9-29.8 ppm; zinc, 37.1-42.8 ppm in sulfated and chelated form respectively; thiamin, 6273 ppm; pyridoxine, 14226 ppm. ECM mineralization was enhanced by mineral (dose and form dependent) and vitamin (dose dependent) supplementation, at non-toxic concentrations below the determined LD50s. This in vitro work confirmed the mineralogenic action of trace minerals and water-soluble vitamins and provided valuable insights for subsequent in vivo nutritional trials.


Assuntos
Minerais/farmacologia , Oligoelementos/farmacologia , Complexo Vitamínico B/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Minerais/química , Dourada , Relação Estrutura-Atividade , Oligoelementos/química , Complexo Vitamínico B/química
5.
PLoS One ; 13(11): e0207303, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30485314

RESUMO

Extracts and compounds derived from marine organisms have reportedly shown some osteogenic potential. As such, these bioactives may aid in the treatment of musculoskeletal conditions such as osteoporosis; helping to address inefficacies with current treatment options. In this study, 72 fractions were tested for their in vitro osteogenic activity using a human foetal osteoblast (hFOB) cell line and bone marrow derived mesenchymal stem cells (MSCs), focusing on their cytotoxic, proliferative and differentiation effects. Extracts dissolved in dimethyl sulfoxide and ethanol showed no significant osteogenic potential. However, two extracts derived from powder residues (left over from original organic extractions) caused a significant promotion of MSC differentiation. Bioactivity from powder residues derived from the epiphytic red algae Ceramium pallidum is described in detail to highlight its treatment potential. In vitro, C. pallidum was shown to promote MSC differentiation and extracellular matrix mineralisation. In vivo, this extract caused a significant increase in opercular bone growth of zebrafish larvae and a significant increase in bone density of regenerated adult caudal fins. Our findings therefore show the importance of continued screening efforts, particularly of novel extract sources, and the presence of bioactive compounds in C. pallidum extract.


Assuntos
Organismos Aquáticos/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Extratos Vegetais , Rodófitas/química , Feto/citologia , Feto/metabolismo , Humanos , Osteoblastos/citologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
6.
Ecotoxicol Environ Saf ; 161: 721-728, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29940513

RESUMO

Many chemicals produced by human activities end up in the aquatic ecosystem causing adverse developmental and reproductive effects in aquatic organisms. There is evidence that some anthropogenic chemicals disturb bone formation and skeletal development but the lack of suitable in vitro and in vivo systems for testing has hindered the identification of underlying mechanisms of osteotoxicity. Several fish systems - an in vitro cell system to study extracellular matrix mineralization and in vivo systems to evaluate bone formation and skeletogenesis - were combined to collect data on the osteotoxic activity of 3-methylcholanthrene (3-MC), a polycyclic aromatic hydrocarbon. Anti-mineralogenic effects, increased incidence of skeletal deformities and reduced bone formation and regeneration were observed in zebrafish upon exposure to 3-MC. Pathway reporter array revealed the role of the aryl hydrocarbon receptor 2 (Ahr2) in the mechanisms underlying 3-MC osteotoxicity in mineralogenic cell lines. Analysis of gene expression in zebrafish larvae confirmed the role of Ahr2 in the signaling of 3-MC toxicity. It also indicated a possible complementary action of the pregnane X receptor (Pxr) in the regulation of genes involved in bone cell activity and differentiation but also in xenobiotic metabolism. Data reported here demonstrated the osteotoxicity of 3-MC but also confirmed the suitability of fish systems to gain insights into the toxic mechanisms of compounds affecting skeletal and bone formation.


Assuntos
Metilcolantreno/toxicidade , Osteogênese/efeitos dos fármacos , Animais , Calcificação Fisiológica/efeitos dos fármacos , Linhagem Celular , Humanos , Larva/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
7.
Sci Rep ; 8(1): 7725, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769706

RESUMO

Through the current trend for bioprospecting, marine organisms - particularly algae - are becoming increasingly known for their osteogenic potential. Such organisms may provide novel treatment options for osteoporosis and other musculoskeletal conditions, helping to address their large healthcare burden and the limitations of current therapies. In this study, extracts from two red algae - Plocamium lyngbyanum and Ceramium secundatum - were tested in vitro and in vivo for their osteogenic potential. In vitro, the growth of human bone marrow stromal cells (hBMSCs) was significantly greater in the presence of the extracts, particularly with P. lyngbyanum treatment. Osteogenic differentiation was promoted more by C. secundatum (70 µg/ml), though P. lyngbyanum had greater in vitro mineralisation potential. Both species caused a marked and dose-dependent increase in the opercular bone area of zebrafish larvae. Our findings therefore indicate the presence of bioactive components in P. lyngbyanum and C. secundatum extracts, which can promote both in vitro and in vivo osteogenic activity.


Assuntos
Desenvolvimento Ósseo/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Extratos Vegetais/farmacologia , Rodófitas/química , Peixe-Zebra/crescimento & desenvolvimento , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Técnicas In Vitro , Larva/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoporose/patologia , Extratos Vegetais/química , Plocamium/química
8.
Gene ; 645: 137-145, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29248578

RESUMO

Although human and mouse genetics have largely contributed to the better understanding of the mechanisms underlying skeletogenesis, much more remains to be uncovered. In this regard alternative and complementary systems have been sought and cell systems capable of in vitro calcification have been developed to study the mechanisms underlying bone formation. In gilthead seabream (Sparus aurata), a gene coding for an unknown protein that is strongly up-regulated during extracellular matrix (ECM) mineralization of a pre-osteoblast cell line was recently identified as a potentially important player in bone formation. In silico analysis of the deduced protein revealed the presence of domains typical of short-chain dehydrogenase/reductases (SDR). Closely related to carbonyl reductase 1, seabream protein belongs to a novel subfamily of SDR proteins with no orthologs in mammals. Analysis of gene expression by qPCR confirmed the strong up-regulation of sdr-like expression during in vitro mineralization but also revealed high expression levels in calcified tissues. A possible role for Sdr-like in osteoblast and bone metabolism was further evidenced through (i) the localization by in situ hybridization of sdr-like transcript in pre-osteoblasts of the operculum and (ii) the regulation of sdr-like gene transcription by Runx2 and retinoic acid receptor, two regulators of osteoblast differentiation and mineralization. Expression data also indicated a role for Sdr-like in gastrointestinal tract homeostasis and during gilthead seabream development at gastrulation and metamorphosis. This study reports a new subfamily of short-chain dehydrogenases/reductases in vertebrates and, for the first time, provides evidence of a role for SDRs in bone metabolism, osteoblast differentiation and/or tissue mineralization.


Assuntos
Clonagem Molecular/métodos , Dourada/genética , Redutases-Desidrogenases de Cadeia Curta/genética , Redutases-Desidrogenases de Cadeia Curta/metabolismo , Animais , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Calcificação Fisiológica , Diferenciação Celular , Linhagem Celular , Simulação por Computador , Matriz Extracelular/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Trato Gastrointestinal/metabolismo , Filogenia , Dourada/metabolismo , Regulação para Cima
9.
Artigo em Inglês | MEDLINE | ID: mdl-28457946

RESUMO

Bone disorders affect millions of people worldwide and available therapeutics have a limited efficacy, often presenting undesirable side effects. As such, there is a need for novel molecules with bone anabolic properties. The aim of this work was to establish a rapid, reliable and reproducible method to screen for molecules with osteogenic activities, using the zebrafish operculum to assess bone formation. Exposure parameters were optimized through morphological analysis of the developing operculum of larvae exposed to calcitriol, a molecule with known pro-osteogenic properties. An exposure of 3days initiated at 3days post-fertilization was sufficient to stimulate operculum formation, while not affecting survival or development of the larvae. Dose-dependent pro- and anti-osteogenic effects of calcitriol and cobalt chloride, respectively, demonstrated the sensitivity of the method and the suitability of the operculum system. A double transgenic reporter line expressing fluorescent markers for early and mature osteoblasts was used to gain insights into the effects of calcitriol and cobalt at the cellular level, with osteoblast maturation shown to be stimulated and inhibited, respectively, in the operculum of exposed fish. The zebrafish operculum represents a consistent, robust and rapid screening system for the discovery of novel molecules with osteogenic, anti-osteoporotic or osteotoxic activity.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Osteogênese/efeitos dos fármacos , Crânio/crescimento & desenvolvimento , Testes de Toxicidade/métodos , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Calcificação Fisiológica/efeitos dos fármacos , Calcitriol/farmacologia , Cobalto/toxicidade , Relação Dose-Resposta a Droga , Feminino , Marcadores Genéticos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Masculino , Osteoblastos/efeitos dos fármacos , Crânio/efeitos dos fármacos , Peixe-Zebra/genética
10.
J Steroid Biochem Mol Biol ; 140: 34-43, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24291400

RESUMO

Retinoic acid (RA), the main active metabolite of vitamin A, regulates vertebrate morphogenesis through signaling pathways not yet fully understood. Such process involves the specific activation of retinoic acid and retinoid X receptors (RARs and RXRs), which are nuclear receptors of the steroid/thyroid hormone receptor superfamily. Teleost fish are suitable models to study vertebrate development, such as skeletogenesis. Cell systems capable of in vitro mineralization have been developed for several fish species and may provide new insights into the specific cellular and molecular events related to vitamin A activity in bone, complementary to in vivo studies. This work aims at investigating the in vitro effects of RA (0.5 and 12.5 µM) on proliferation, differentiation and extracellular matrix (ECM) mineralization of two gilthead seabream bone-derived cell lines (VSa13 and VSa16), and at identifying molecular targets of its action through gene expression analysis. RA induced phenotypic changes and cellular proliferation was inhibited in both cell lines in a cell type-dependent manner (36-59% in VSa13 and 17-46% in VSa16 cells). While RA stimulated mineral deposition in VSa13 cell cultures (50-62% stimulation), it inhibited the mineralization of extracellular matrix in VSa16 cells (11-57% inhibition). Expression of hormone receptor genes (rars and rxrs), and extracellular matrix-related genes such as matrix and bone Gla proteins (mgp and bglap), osteopontin (spp1) and type I collagen (col1a1) were differentially regulated upon exposure to RA in proliferating, differentiating and mineralizing cultures of VSa13 and VSa16 cells. Altogether, our results show: (i) RA affects proliferative and mineralogenic activities in two fish skeletal cell types and (ii) that during phenotype transitions, specific RA nuclear receptors and bone-related genes are differentially expressed in a cell type-dependent manner.


Assuntos
Osso e Ossos/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Matriz Extracelular/metabolismo , Tretinoína/farmacologia , Animais , Proteínas de Ligação ao Cálcio/biossíntese , Linhagem Celular , Proteínas da Matriz Extracelular/biossíntese , Expressão Gênica/efeitos dos fármacos , Osteocalcina/biossíntese , Receptores do Ácido Retinoico/biossíntese , Receptores X de Retinoides/biossíntese , Dourada , Proteína de Matriz Gla
11.
Zebrafish ; 10(4): 500-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23909483

RESUMO

Mechanisms of bone formation and skeletal development have been successfully investigated in zebrafish using a variety of in vivo approaches, but in vitro studies have been hindered due to a lack of homologous cell lines capable of producing an extracellular matrix (ECM) suitable for mineral deposition. Here we describe the development and characterization of a new cell line termed ZFB1, derived from zebrafish calcified tissues. ZFB1 cells have an epithelium-like phenotype, grow at 28°C in a regular L-15 medium supplemented with 15% of fetal bovine serum, and are maintained and manipulated using standard methods (e.g., trypsinization, cryopreservation, and transfection). They can therefore be propagated and maintained easily in most cell culture facilities. ZFB1 cells show aneuploidy with 2n=78 chromosomes, indicative of cell transformation. Furthermore, because DNA can be efficiently delivered into their intracellular space by nucleofection, ZFB1 cells are suitable for gene targeting approaches and for assessing gene promoter activity. ZFB1 cells can also differentiate toward osteoblast or chondroblast lineages, as demonstrated by expression of osteoblast- and chondrocyte-specific markers, they exhibit an alkaline phosphatase activity, a marker of bone formation in vivo, and they can mineralize their ECM. Therefore, they represent a valuable zebrafish-derived in vitro system for investigating bone cell differentiation and extracellular matrix mineralization.


Assuntos
Desenvolvimento Ósseo/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular , Matriz Extracelular/metabolismo , Peixe-Zebra , Animais , Calcificação Fisiológica , Matriz Extracelular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteoglicanas/metabolismo , Proteoglicanas/fisiologia
12.
Differentiation ; 84(3): 240-51, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22903186

RESUMO

Embryonic stem (ES) cells are a promising tool for generation of transgenic animals and an ideal experimental model for in vitro studies of embryonic cell development, differentiation and gene manipulation. Here we report the development and initial characterization of a pluripotent embryonic stem like cell line, designated as ESSA1, derived from blastula stage embryos of the gilthead seabream (Sparus aurata, L). ESSA1 cells are cultured in Leibovitz's L-15 medium supplemented with 5% fetal bovine serum and, unlike other ES cells, without a feeder layer. They have a round or polygonal morphology, grow exponentially in culture and form dense colonies. ESSA1 cells also exhibit intense alkaline phosphatase activity, normal karyotype and are positive for stage-specific embryonic antigen-1 (SSEA1) and octamer-binding transcription factor 4 (Oct4) markers for up to 30 passages. Upon treatment with all-trans retinoic acid, ESSA1 cells differentiate into neuron-like, oligodendritic, myocyte and melanocyte cells; they can also form embryoid bodies when seeded in bacteriological plates, a characteristic usually associated with pluripotency. The capacity of ESSA1 cells to differentiate into osteoblastic, chondroblastic or osteoclastic cell lineages and to produce a mineralized extracellular matrix in vitro was demonstrated through histochemical techniques and further confirmed by immunocytochemistry using lineage-specific markers. Furthermore, ESSA1 cells can be used to produce chimera, where they contribute to the development of a variety of tissues including the trunk and gut of zebrafish embryos and fry. Thus, ESSA1 cells represent a promising model for investigating bone-lineage cell differentiation in fish and also highlight the potential of piscine stem cell research.


Assuntos
Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Células-Tronco Embrionárias/citologia , Células-Tronco Mesenquimais/citologia , Dourada/embriologia , Animais , Blástula/citologia , Condrócitos/citologia , Osteoblastos/citologia , Osteoclastos/citologia , Células-Tronco Pluripotentes/citologia
13.
FEBS J ; 274(17): 4428-39, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17680811

RESUMO

Fish has been recently recognized as a suitable vertebrate model and represents a promising alternative to mammals for studying mechanisms of tissue mineralization and unravelling specific questions related to vertebrate bone formation. The recently developed Sparus aurata (gilthead seabream) osteoblast-like cell line VSa16 was used to construct a cDNA subtractive library aimed at the identification of genes associated with fish tissue mineralization. Suppression subtractive hybridization, combined with mirror orientation selection, identified 194 cDNA clones representing 20 different genes up-regulated during the mineralization of the VSa16 extracellular matrix. One of these genes accounted for 69% of the total number of clones obtained and was later identified as theS. aurata osteopontin-like gene. The 2138-bp full-length S. aurata osteopontin-like cDNA was shown to encode a 374 amino-acid protein containing domains and motifs characteristic of osteopontins, such as an integrin receptor-binding RGD motif, a negatively charged domain and numerous post-translational modifications (e.g. phosphorylations and glycosylations). The common origin of mammalian osteopontin and fish osteopontin-like proteins was indicated through an in silico analysis of available sequences showing similar gene and protein structures and was further demonstrated by their specific expression in mineralized tissues and cell cultures. Accordingly, and given its proven association with mineral formation and its characteristic protein domains, we propose that the fish osteopontin-like protein may play a role in hard tissue mineralization, in a manner similar to osteopontin in higher vertebrates.


Assuntos
Matriz Extracelular/fisiologia , Osteopontina/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Linhagem Celular , Clonagem Molecular , DNA Complementar , Peixes , Dados de Sequência Molecular , Osteopontina/química , Osteopontina/genética , Reação em Cadeia da Polimerase , Regulação para Cima
14.
Bone ; 39(6): 1373-81, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16919510

RESUMO

Bone morphogenetic protein 2 (BMP-2) is a secreted signaling molecule that acts as an inducer of bone formation and a regulator of embryonic development. The objectives of this work were as follows: (1) to clone the full-length cDNA of BMP-2 in a marine fish model, (2) analyze its gene expression during development, in adult tissues and in cell lines, and (3) identify protein conserved features of vertebrate BMP-2. Using a combination of RT- and 5'-RACE-PCR, a 1653-bp fragment corresponding to Sparus aurata BMP-2 cDNA (SaBMP-2) was amplified. Levels of SaBMP-2 gene expression were estimated using quantitative real-time PCR and shown to be strongly increased (150-fold induction) at gastrulation, thus suggesting a key role for BMP-2 in fish development. Tissue distribution of SaBMP-2 mRNA revealed highest levels in the calcified tissues bone, caudal fin and scales and in liver. BMP-2 was also found to be highly expressed in S. aurata bone-derived cell lines VSa13 and VSa16 and to be up-regulated (more than 10-fold induction) in mineralized VSa13 chondrocyte-like cells. Using bioinformatic tools and all vertebrate protein sequences available, conserved features of BMP-2 were characterized. The mature protein was shown to be highly conserved across 20 species indicating that BMP-2 function has been conserved throughout evolution, a finding that is in agreement with the widely accepted view of the important role played by BMPs in vertebrate development.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Dourada/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas Morfogenéticas Ósseas/química , Linhagem Celular , Condrócitos/metabolismo , Clonagem Molecular , Sequência Conservada , DNA Complementar/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Osteoblastos/metabolismo , Filogenia , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Dourada/crescimento & desenvolvimento , Distribuição Tecidual
15.
J Biol Chem ; 281(22): 15037-43, 2006 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-16565091

RESUMO

Osteocalcin is a small, secreted bone protein whose gene consists of four exons. In the course of analyzing the structure of fish osteocalcin genes, we recently found that the spotted green pufferfish has two possible exon 2 structures, one of 15 bp and the other of 324 bp. Subsequent analysis of the pufferfish cDNA showed that only the transcript with a large exon 2 exists. Exon 2 codes for the osteocalcin propeptide, and exon 2 of pufferfish osteocalcin is approximately 3.4-fold larger than exon 2 previously found in other vertebrate species. We have termed this new pufferfish osteocalcin isoform OC2. Additional studies showed that the OC2 isoform is restricted to a unique fish taxonomic group, the Osteichthyes; OC2 is the only osteocalcin isoform found so far in six Osteichthyes species, whereas both OC1 and OC2 isoforms coexist in zebrafish and rainbow trout. The larger size of the OC2 propeptide is due to an acidic region that is likely to be highly phosphorylated and has no counterpart in the OC1 propeptide. We propose 1) that OC1 and OC2 are encoded by distinct genes that originated from a duplication event that probably occurred in the teleost fish lineage soon after divergence from tetrapods and 2) that the novel OC2 propeptide could be, if secreted, a phosphoprotein that participates in the regulation of biomineralization through its large acidic and phosphorylated propeptide.


Assuntos
Osteocalcina/química , Osteocalcina/genética , Tetraodontiformes/genética , Tetraodontiformes/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Evolução Molecular , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Osteocalcina/metabolismo , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Takifugu/genética
16.
Biochimie ; 87(5): 411-20, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15820747

RESUMO

Osteonectin is a matricellular protein involved in various cellular mechanisms but its exact function remains unclear despite numerous studies. We present here the cloning of Sparus aurata partial osteonectin cDNA and the reconstruction of 15 other sequences from both vertebrates and invertebrates, almost doubling the set of available sequences (a total of 35 sequences is now available). Taking advantage of the resulting large amount of data, we have created multiple sequence alignments and identified osteonectin putative conserved features (intra- and inter-disulfide bonds, collagen- and calcium-binding domains and phosphorylation sites) likely to be important for protein structure and function. This work also provides the first evidence for the presence of more than one osteonectin in some species. Finally, S. aurata osteonectin gene expression has been shown to initiate during larval development shortly after gastrulation, and to be high in bone-derived cell lines while down-regulated during extracellular matrix mineralization, further emphasizing the important role of osteonectin in skeletal development and bone formation.


Assuntos
DNA Complementar/análise , Regulação da Expressão Gênica no Desenvolvimento , Osteonectina/genética , Salmonidae/genética , Dourada/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Osso e Ossos/metabolismo , Calcificação Fisiológica , Cálcio/metabolismo , Clonagem Molecular , Colágeno/metabolismo , Sequência Conservada , Dissulfetos/química , Matriz Extracelular , Expressão Gênica , Dados de Sequência Molecular , Fosforilação , Filogenia , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA