Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Endocrine ; 78(3): 476-483, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36301508

RESUMO

PURPOSE: Our previous study showed that 6-h fasting increased insulin expression in the hypothalamus of male rats. We, therefore, wanted to examine if this phenomenon occurs in female rats and whether it depended on the estrus cycle phase. METHODS: Female rats in proestrus or diestrus were either exposed to 6-h fasting or had ad libitum access to food. The serum, cerebrospinal fluid, and hypothalamic insulin levels were determined using radioimmunoassay. The hypothalamic insulin mRNA expression was measured by RT-qPCR, while the hypothalamic insulin distribution was assessed immunohistochemically. RESULTS: Albeit the short-term fasting lowered circulating insulin, both hypothalamic insulin mRNA expression and hypothalamic insulin content remained unaltered. As for the hypothalamic insulin distribution, strong insulin immunopositivity was noted primarily in ependymal cells lining the upper part of the third ventricle and some neurons mainly located within the periventricular nucleus. The pattern of insulin distribution was similar between the controls and the females exposed to fasting regardless of the estrous cycle phase. CONCLUSION: The findings of this study indicate that the control of insulin expression in the hypothalamus differs from that in the pancreatic beta cells during short-term fasting. Furthermore, they also imply that the regulation of insulin expression in the female hypothalamus is different from males but independent of the estrus cycle phase.


Assuntos
Jejum , Insulina , Animais , Ratos , Feminino , Masculino , Insulina/metabolismo , Hipotálamo/metabolismo , Estro/fisiologia , RNA Mensageiro/metabolismo
2.
Acta Biochim Pol ; 69(3): 647-655, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35877942

RESUMO

Appetite regulation in the hypothalamus is dependent on hormonal signals from the periphery, such as insulin and leptin, and can be modulated by both sugar-rich diet and stress. Our aim was to explore the effects of 9-week feeding with 20% fructose solution combined with 4-week chronic unpredictable stress, on appetite-regulating neuropeptides and modulatory role of leptin and insulin signalling in the hypothalamus of male Wistar rats. Energy intake, body mass and adiposity, as well as circulatory leptin and insulin concentrations were assessed. Hypothalamic insulin signalling was analysed at the level of glucose transporters, as well as at the protein level and phosphorylation of insulin receptor, insulin receptor supstrate-1, Akt and ERK. Phosphorylation of AMP-activated protein kinase (AMPK), level of protein tyrosine phosphatase 1B (PTP1B) and expression of leptin receptor (ObRb) and suppressor of cytokine signalling 3 (SOCS3) were also analysed, together with the expression of orexigenic agouti-related protein (AgRP) and anorexigenic proopiomelanocortin (POMC) neuropeptides. The results revealed that stress decreased body mass and adiposity, blood leptin level and expression of ObRb, SOCS3 and POMC, while combination with fructose diet led to marked increase of AgRP, associated with AMPK phosphorylation despite increased plasma insulin. Reduced Akt, enhanced ERK activity and elevated PTP1B were also observed in the hypothalamus of these animals. In conclusion, our results showed that joint effects of fructose diet and stress are more deleterious than the separate ones, since inappropriate appetite control in the hypothalamus may provide a setting for the disturbed energy homeostasis in the long run.


Assuntos
Neuropeptídeos , Pró-Opiomelanocortina , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/farmacologia , Animais , Citocinas/metabolismo , Dieta , Frutose/efeitos adversos , Frutose/metabolismo , Glucose/metabolismo , Hipotálamo/metabolismo , Insulina , Leptina , Masculino , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Fosforilação , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Receptor de Insulina/metabolismo , Receptores para Leptina/metabolismo
3.
J Sci Food Agric ; 101(14): 5984-5991, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33856052

RESUMO

BACKGROUND: Nutritional modulations may be considered a strategy to protect mental health. Neuronal homeostasis is highly dependent on the availability of glucose, which represents the primary energy source for the brain. In this study, we evaluated the effects of walnut intake and fructose-rich diet on the expression of glucose transporters (GLUTs) in two rat brain regions: hypothalamus and hippocampus. RESULTS: Our results show that walnut supplementation of fructose-fed animals restored the hypothalamic content of GLUT1 and GLUT3 protein. Furthermore, walnut intake did not affect increased hypothalamic GLUT2 content upon fructose consumption. These effects were accompanied by distinctive alterations of hippocampal GLUTs levels. Specifically, walnut intake increased GLUT1 content, whereas GLUT2 protein was decreased within the rat hippocampus after both individual and combined treatments. CONCLUSION: Overall, our study suggests that walnut supplementation exerted modulatory effects on the glucose transporters within specific brain regions in the presence of developed metabolic disorder. © 2021 Society of Chemical Industry.


Assuntos
Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Hipocampo/metabolismo , Hipotálamo/metabolismo , Juglans/metabolismo , Animais , Frutose/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 3/genética , Masculino , Nozes/metabolismo , Ratos , Ratos Wistar
4.
Neurochem Res ; 44(2): 388-399, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30460639

RESUMO

Our group previously reported that 6-h fasting increased both insulin II mRNA expression and insulin level in rat hypothalamus. Given that insulin effects on central glucose metabolism are insufficiently understood, we wanted to examine if the centrally produced insulin affects expression and/or regional distribution of glucose transporters, and glycogen stores in the hypothalamus during short-term fasting. In addition to determining the amount of total and activated insulin receptor, glucose transporters, and glycogen, we also studied distribution of insulin receptors and glucose transporters within the hypothalamus. We found that short-term fasting did not affect the astrocytic 45 kDa GLUT1 isoform, but it significantly increased the amount of endothelial 55 kDa GLUT1, and neuronal GLUT3 in the membrane fractions of hypothalamic proteins. The level of GLUT2 whose presence was detected in neurons, ependymocytes and tanycytes was also elevated. Unlike hepatic glycogen which was decreased, hypothalamic glycogen content was not changed after 6-h fasting. Our findings suggest that neurons may be given a priority over astrocytes in terms of glucose supply even during the initial phase of metabolic response to fasting. Namely, increase in glucose influx into the brain extracellular fluid and neurons by increasing the translocation of GLUT1, and GLUT3 in the cell membrane may represent the first line of defense in times of scarcity. The absence of co-localization of these membrane transporters with the activated insulin receptor suggests this process takes place in an insulin-independent manner.


Assuntos
Astrócitos/metabolismo , Células Endoteliais/metabolismo , Jejum , Neurônios/metabolismo , Animais , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Hipotálamo/metabolismo , Masculino , Neuroglia/metabolismo , Ratos Wistar , Ativação Transcricional/fisiologia
5.
Eur J Neurosci ; 46(1): 1730-1737, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28544147

RESUMO

In the hypothalamus, insulin takes on many roles involved in energy homoeostasis. Therefore, the aim of this study was to examine hypothalamic insulin expression during the initial phase of the metabolic response to fasting. Hypothalamic insulin content was assessed by both radioimmunoassay and Western blot. The relative expression of insulin mRNA was examined by qPCR. Immunofluorescence and immunohistochemistry were used to determine the distribution of insulin immunopositivity in the hypothalamus. After 6-h fasting, both glucose and insulin levels were decreased in serum but not in the cerebrospinal fluid. Our study showed for the first time that, while the concentration of circulating glucose and insulin decreased, both insulin mRNA expression and insulin content in the hypothalamic parenchyma were increased after short-term fasting. Increased insulin immunopositivity was detected specifically in the neurons of the hypothalamic periventricular nucleus and in the ependymal cells of fasting animals. These novel findings point to the complexity of mechanisms regulating insulin expression in the CNS in general and in the hypothalamus in particular.


Assuntos
Jejum/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Animais , Glicemia/metabolismo , Jejum/sangue , Jejum/líquido cefalorraquidiano , Insulina/sangue , Insulina/líquido cefalorraquidiano , Insulina/genética , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
6.
PLoS One ; 8(5): e63694, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23671692

RESUMO

Fat mass and obesity associated protein (Fto) is a nucleic acid demethylase, with a preference for thymine or uracil, according to the recent structural data. This fact suggests that methylated single-stranded RNA, rather than DNA, may be the primary Fto substrate. Fto is abundantly expressed in all hypothalamic sites governing feeding behavior. Considering that selective modulation of Fto levels in the hypothalamus can influence food intake, we set out to investigate the effect of 48 h fasting on the Fto expression in lateral hypothalamic area, paraventricular, ventromedial and arcuate nucleus, the regulatory centres of energy homeostasis. We have demonstrated that 48 h fasting causes not only an increase in the overall hypothalamic levels of both Fto mRNA and protein, but also alters Fto intracellular distribution. This switch happens in some neurons of paraventricular and ventromedial nucleus, as well as lateral hypothalamic area, resulting in the majority of the enzyme being localized outside the cell nuclei. Interestingly, the change in the Fto intracellular localization was not observed in neurons of arcuate nucleus, suggesting that fasting did not universally affect Fto in all of the hypothalmic sites involved in energy homeostasis regulation. Both Fto mRNA and catechol-O-methyltransferaze mRNA were upregulated in the identical time-dependent manner in fasting animals. This fact, combined with the knowledge of the Fto substrate preference, may provide further insight into monoamine metabolism in the state of disturbed energy homeostasis.


Assuntos
Citoplasma/metabolismo , Hipotálamo/citologia , Neurônios/metabolismo , Proteínas/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Animais , Catecol O-Metiltransferase/metabolismo , Metabolismo Energético , Jejum/fisiologia , Privação de Alimentos , Expressão Gênica , Regulação da Expressão Gênica , Homeostase , Hipotálamo/metabolismo , Masculino , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Transporte Proteico , Proteínas/genética , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA