Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuron ; 102(1): 120-127.e4, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30765165

RESUMO

Throughout life, individuals learn to predict a punishment via its association with sensory stimuli. This process ultimately prompts goal-directed actions to prevent the danger, a behavior defined as avoidance. Neurons in the lateral habenula (LHb) respond to aversive events as well as to environmental cues predicting them, supporting LHb contribution to cue-punishment association. However, whether synaptic adaptations at discrete habenular circuits underlie such associative learning to instruct avoidance remains elusive. Here, we find that, in mice, contingent association of an auditory cue (tone) with a punishment (foot shock) progressively causes cue-driven LHb neuronal excitation during avoidance learning. This process is concomitant with the strengthening of LHb AMPA receptor-mediated neurotransmission. Such a phenomenon occludes long-term potentiation and occurs specifically at hypothalamus-to-habenula synapses. Silencing hypothalamic-to-habenulainputs or optically inactivating postsynaptic AMPA receptors within the LHb disrupts avoidance learning. Altogether, synaptic strengthening at a discrete habenular circuit transforms neutral stimuli into salient punishment-predictive cues to guide avoidance.


Assuntos
Aprendizagem da Esquiva/fisiologia , Sinais (Psicologia) , Habenula/fisiologia , Hipotálamo/fisiologia , Potenciação de Longa Duração/fisiologia , Punição , Sinapses/fisiologia , Animais , Aprendizagem por Associação/fisiologia , Masculino , Camundongos , Técnicas de Patch-Clamp , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/fisiologia
2.
Elife ; 72018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30295606

RESUMO

Reinforcement has long been thought to require striatal synaptic plasticity. Indeed, direct striatal manipulations such as self-stimulation of direct-pathway projection neurons (dMSNs) are sufficient to induce reinforcement within minutes. However, it's unclear what role, if any, is played by downstream circuitry. Here, we used dMSN self-stimulation in mice as a model for striatum-driven reinforcement and mapped the underlying circuitry across multiple basal ganglia nuclei and output targets. We found that mimicking the effects of dMSN activation on downstream circuitry, through optogenetic suppression of basal ganglia output nucleus substantia nigra reticulata (SNr) or activation of SNr targets in the brainstem or thalamus, was also sufficient to drive rapid reinforcement. Remarkably, silencing motor thalamus-but not other selected targets of SNr-was the only manipulation that reduced dMSN-driven reinforcement. Together, these results point to an unexpected role for basal ganglia output to motor thalamus in striatum-driven reinforcement.


Assuntos
Atividade Motora/fisiologia , Neostriado/fisiologia , Reforço Psicológico , Tálamo/fisiologia , Animais , Gânglios da Base/fisiologia , Estimulação Elétrica , Feminino , Glutamatos/metabolismo , Masculino , Camundongos , Optogenética , Receptores de N-Metil-D-Aspartato/metabolismo , Neurônios Serotoninérgicos/metabolismo , Transmissão Sináptica/fisiologia
3.
Neuron ; 89(4): 734-40, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26833136

RESUMO

Movement suppression in Parkinson's disease (PD) is thought to arise from increased efficacy of the indirect pathway basal ganglia circuit, relative to the direct pathway. However, the underlying pathophysiological mechanisms remain elusive. To examine whether changes in the strength of synaptic inputs to these circuits contribute to this imbalance, we obtained paired whole-cell recordings from striatal direct- and indirect-pathway medium spiny neurons (dMSNs and iMSNs) and optically stimulated inputs from sensorimotor cortex or intralaminar thalamus in brain slices from control and dopamine-depleted mice. We found that dopamine depletion selectively decreased synaptic strength at thalamic inputs to dMSNs, suggesting that thalamus drives asymmetric activation of basal ganglia circuitry underlying parkinsonian motor impairments. Consistent with this hypothesis, in vivo chemogenetic and optogenetic inhibition of thalamostriatal terminals reversed motor deficits in dopamine-depleted mice. These results implicate thalamostriatal projections in the pathophysiology of PD and support interventions targeting thalamus as a potential therapeutic strategy.


Assuntos
Corpo Estriado/patologia , Vias Neurais/fisiologia , Transtornos Parkinsonianos/patologia , Sinapses/fisiologia , Tálamo/patologia , Adrenérgicos/toxicidade , Animais , Modelos Animais de Doenças , Agonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Comportamento Exploratório , Lateralidade Funcional , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Feixe Prosencefálico Mediano/lesões , Camundongos , N-Metilaspartato/farmacologia , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA