Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(1): 75, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135786

RESUMO

Mercury (Hg) contamination of aquatic environments can lead to bioaccumulation in organisms, but most previous work has focused on fish and not on semi-aquatic reptiles such as turtles that traverse both terrestrial and aquatic habitats. Here, we analyzed total Hg (THg) concentrations in 30 painted turtles (Chrysemys picta) collected from Lake Michigan (USA) coastal wetlands in 2013 to determine if (1) turtles bioaccumulated THg from the environment, (2) concentrations differed between turtle liver and muscle tissue, and (3) tissue concentrations were related to environmental concentrations (e.g., sediment THg). All individual turtles had detectable THg concentrations in both liver and muscle tissue. On average, THg concentrations were over three times higher in liver tissue compared to muscle tissue. We found a positive linear relationship between muscle THg concentrations and turtle body mass, a proxy for age, suggesting bioaccumulation in this species. Neither liver nor muscle THg concentrations followed the sediment contaminant gradient in the wetlands. Despite this, location was a strong predictor of tissue concentration in a linear model suggesting that other site-specific characteristics may be important. Overall, our results demonstrate that painted turtles accumulate mercury in liver and muscle tissues at different rates, which may be constrained by local conditions. Further research is needed to better understand the relationship between environmental mercury concentrations and body burdens in animals like turtles that traverse habitats. In addition, long-lived turtles could be incorporated into pollution monitoring programs to provide a more holistic picture of food web contamination and ecosystem health.


Assuntos
Mercúrio , Tartarugas , Poluentes Químicos da Água , Animais , Mercúrio/análise , Lagos , Ecossistema , Bioacumulação , Michigan , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
2.
Ecology ; 98(5): 1475, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28263380

RESUMO

Animals can be important in modulating ecosystem-level nutrient cycling, although their importance varies greatly among species and ecosystems. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Ecology (MTE) and ecological stoichiometry (ES). They also represent an important set of functional traits that may reflect both environmental and phylogenetic influences. Over the past two decades, studies of animal-mediated nutrient cycling have increased dramatically, especially in aquatic ecosystems. Here we present a global compilation of aquatic animal nutrient excretion rates. The dataset includes 10,534 observations from freshwater and marine animals of N and/or P excretion rates. These observations represent 491 species, including most aquatic phyla. Coverage varies greatly among phyla and other taxonomic levels. The dataset includes information on animal body size, ambient temperature, taxonomic affiliations, and animal body N:P. This data set was used to test predictions of MTE and ES, as described in Vanni and McIntyre (2016; Ecology DOI: 10.1002/ecy.1582).


Assuntos
Organismos Aquáticos/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Animais , Ecossistema , Água Doce , Filogenia
3.
Ecol Lett ; 9(11): 1186-97, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17040321

RESUMO

Stoichiometric constraints within ecological interactions and their ecosystem consequences may depend on characteristics of the abiotic environment such as background nutrient levels. We assessed whether consumer identity, via differing body stoichiometry, could regulate periphyton stoichiometry across nutrient regimes in open systems. In 60 flow-through artificial streams, we factorially crossed dissolved inorganic nitrogen levels (elevated = 294 micog L(-1), ambient = 26 microg L(-1)) with dissolved inorganic phosphorus levels (DIP: elevated = 15 microg L(-1), ambient = 3 microg L(-1)) and consumer type [crayfish (body N : P = 18), snails (body N : P = 28) or a control]. At ambient DIP, periphyton in the crayfish treatment had a lower %P and a lower C : P than periphyton in the snail treatment suggesting that consumer identity, probably mediated by differing P-excretion, regulated periphyton P content. At high DIP, consumer identity no longer affected periphyton elemental composition. Therefore, the stoichiometry of consumer-driven nutrient recycling and consumer identity may be less important to ecosystem functioning in environments with elevated nutrient levels.


Assuntos
Astacoidea/metabolismo , Eucariotos/metabolismo , Cadeia Alimentar , Água Doce/química , Caramujos/metabolismo , Animais , Modelos Biológicos , Modelos Estatísticos , Nitrogênio/química , Nitrogênio/metabolismo , Fósforo/química , Fósforo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA