Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 9(5): e96838, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24806292

RESUMO

Based on sequence data from ITS rDNA, cox1 and cox2, six Peronospora species are recognised as phylogenetically distinct on various Papaver species. The host ranges of the four already described species P. arborescens, P. argemones, P. cristata and P. meconopsidis are clarified. Based on sequence data and morphology, two new species, P. apula and P. somniferi, are described from Papaver apulum and P. somniferum, respectively. The second Peronospora species parasitizing Papaver somniferum, that was only recently recorded as Peronospora cristata from Tasmania, is shown to represent a distinct taxon, P. meconopsidis, originally described from Meconopsis cambrica. It is shown that P. meconopsidis on Papaver somniferum is also present and widespread in Europe and Asia, but has been overlooked due to confusion with P. somniferi and due to less prominent, localized disease symptoms. Oospores are reported for the first time for P. meconopsidis from Asian collections on Papaver somniferum. Morphological descriptions, illustrations and a key are provided for all described Peronospora species on Papaver. cox1 and cox2 sequence data are confirmed as equally good barcoding loci for reliable Peronospora species identification, whereas ITS rDNA does sometimes not resolve species boundaries. Molecular phylogenetic data reveal high host specificity of Peronospora on Papaver, which has the important phytopathological implication that wild Papaver spp. cannot play any role as primary inoculum source for downy mildew epidemics in cultivated opium poppy crops.


Assuntos
DNA Espaçador Ribossômico/genética , Papaver/genética , Peronospora/genética , Filogenia , DNA Fúngico/genética , Especificidade de Hospedeiro/genética , Ópio , Papaver/microbiologia , Peronospora/classificação , Peronospora/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
2.
Phytopathology ; 103(5): 479-87, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23301814

RESUMO

Populations of Sclerotium rolfsii, the causal organism of Sclerotium root-rot on a wide range of hosts, can be placed into mycelial compatibility groups (MCGs). In this study, we evaluated three different molecular approaches to unequivocally identify each of 12 previously identified MCGs. These included restriction fragment length polymorphism (RFLP) patterns of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA (rDNA) and sequence analysis of two protein-coding genes: translation elongation factor 1α (EF1α) and RNA polymerase II subunit two (RPB2). A collection of 238 single-sclerotial isolates representing 12 MCGs of S. rolfsii were obtained from diseased sugar beet plants from Chile, Italy, Portugal, and Spain. ITS-RFLP analysis using four restriction enzymes (AluI, HpaII, RsaI, and MboI) displayed a low degree of variability among MCGs. Only three different restriction profiles were identified among S. rolfsii isolates, with no correlation to MCG or to geographic origin. Based on nucleotide polymorphisms, the RPB2 gene was more variable among MCGs compared with the EF1α gene. Thus, 10 of 12 MCGs could be characterized utilizing the RPB2 region only, while the EF1α region resolved 7 MCGs. However, the analysis of combined partial sequences of EF1α and RPB2 genes allowed discrimination among each of the 12 MCGs. All isolates belonging to the same MCG showed identical nucleotide sequences that differed by at least in one nucleotide from a different MCG. The consistency of our results to identify the MCG of a given S. rolfsii isolate using the combined sequences of EF1α and RPB2 genes was confirmed using blind trials. Our study demonstrates that sequence variation in the protein-coding genes EF1α and RPB2 may be exploited as a diagnostic tool for MCG typing in S. rolfsii as well as to identify previously undescribed MCGs.


Assuntos
Basidiomycota/genética , Variação Genética , Doenças das Plantas/microbiologia , Sequência de Bases , Basidiomycota/fisiologia , Beta vulgaris , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Dados de Sequência Molecular , Fator 1 de Elongação de Peptídeos/genética , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , RNA Polimerase II/genética , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA