Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Agric Food Chem ; 71(10): 4337-4345, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36861492

RESUMO

Organosulfur compounds (OSCs) in coffee remain challenging to analyze by conventional gas chromatography (GC) due to their low concentrations amid coffee's complex matrix and susceptibility to chiral-odor influences. In this study, multidimensional GC (MDGC) methods were developed to profile OSCs in coffee. Conventional GC was compared to comprehensive GC (GC×GC) for untargeted OSC analysis in eight specialty coffees, and GC×GC was found to improve the fingerprinting of OSCs in coffee (50 vs 16 OSCs identified). Of the 50 OSCs, 2-methyltetrahydrothiophen-3-one (2-MTHT) was of high interest due to its chirality and known aroma contribution. Following that, a heart-cutting method for chiral GC (GC-GC) was developed, validated, and applied to the coffees. The mean enantiomer ratio of 2-MTHT was observed to be 1.56 (R/S) in brewed coffees. Overall, MDGC techniques allowed for more comprehensive analyses of coffee OSCs, from which (R)-2-MTHT was found to be the predominant enantiomer with the lower odor threshold.


Assuntos
Café , Odorantes , Café/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Cromatografia Gasosa/métodos
2.
J Chromatogr A ; 1682: 463477, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36137342

RESUMO

Tea is a complex food matrix comprising of many structurally diverse compounds, of which catechins and their oxidised derivatives are of particular interest due to their nutritional functionality. However, these catechins and derivatives exist in various isomeric forms with few or no pure standards available, rendering their analysis challenging. A method combining multi-dimensional liquid chromatography (MDLC) and high-resolution mass spectrometry (HRMS) was developed for the characterisation of these compounds using Ceylon tea as a model. Based on a Plackett-Burman (PB) design, flow rate and initial methanol percentage were identified as the most significant factors (p < 0.05) affecting chromatogram coverage and resolution (Rs) for comprehensive two-dimensional LC (LCxLC) and heart-cutting two-dimensional LC (LC-LC) respectively. Central composite design (CCD) was then applied using these parameters for method optimisation and to identify second-order relationships between screened parameters. The optimised LCxLC (flow rate: 2.18 mL/min and initial methanol percentage: 28.0%) and LC-LC (flow rate: 0.86 mL/min and initial methanol percentage for different cuts: A- 10.0%; B- 15.8%; and C- 18.7%) methods were applied to the analysis of Ceylon tea samples from seven regions of Sri Lanka and demonstrated an improved separation of co-eluting isomeric compounds. Finally, with the mass spectral information from HRMS, a total of 31 compounds (eight monomers, 17 dimers, five trimers and one tetramer) were detected and putatively identified in Ceylon tea.


Assuntos
Catequina , Catequina/análise , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Metanol/análise , Sri Lanka , Chá/química
3.
J Appl Microbiol ; 133(3): 1461-1478, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35656986

RESUMO

AIMS: The objective of this study was to explore the potential of fermentation as a biovalorization strategy for spent tea leaves (STL), a major agrifood waste generated from the tea extraction industry. Fermentation by wine yeasts or lactic acid bacteria (LAB) has shown promising results in previous studies across various substrates. METHODS AND RESULTS: Konacha (green tea) STL slurries were inoculated with single strains of wine yeasts or LAB respectively. After a 48-h fermentation, changes in selected nonvolatile and volatile compositions were evaluated. Fermentation by LAB increased organic acid content by 5- to 7-fold (except Lactobacillus fermentum) and modulated the composition of major tea catechins, whereas wine yeast fermentation resulted in a 30% increase in amino acid content. Strain-specific production of specific volatile compounds was also observed such as butanoic acid (L. fermentum), isoamyl acetate (Pichia kluyveri) and 4-ethylphenol (L. plantarum). CONCLUSIONS: Both volatile and nonvolatile compound compositions of Konacha STL were successfully modified via wine yeast and LAB fermentation. SIGNIFICANCE AND IMPACT OF STUDY: Our findings indicate that Konacha STL is a suitable medium for biovalorization by wine yeasts or LAB via the generation of commercially useful volatile and nonvolatile compounds. Future optimizations could further render fermentation an economically viable strategy for the upcycling of STL.


Assuntos
Lactobacillales , Vinho , Fermentação , Saccharomyces cerevisiae , Chá , Vinho/microbiologia , Leveduras/metabolismo
4.
Food Chem ; 388: 132971, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35462220

RESUMO

Coffee has attracted significant research interest owing to its complex volatile composition and aroma, which imparts a pleasant sensorial experience that remains challenging to analyse and interpret. This review summarises analytical challenges associated with coffee's volatile and matrix complexity, and recent developments in instrumental techniques to resolve them. The benefits of state-of-the-art analytical techniques applied to coffee volatile analysis from experimental design to sample preparation, separation, detection, and data analysis are evaluated. Complementary method selection coupled with progressive experimental design and data analysis are vital to unravel the increasing comprehensiveness of coffee volatile datasets. Considering this, analytical workflows for conventional, targeted, and untargeted coffee volatile analyses are thus proposed considering the trends towards sorptive extraction, multidimensional gas chromatography, and high-resolution mass spectrometry. In conclusion, no single analytical method addresses coffee's complexity in its entirely, and volatile analysis must be tailored to the key objectives and concerns of the analyst.


Assuntos
Café , Compostos Orgânicos Voláteis , Café/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas , Odorantes/análise , Compostos Orgânicos Voláteis/análise
5.
Food Microbiol ; 92: 103609, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32950144

RESUMO

The fermentation characteristics of non-Saccharomyces yeasts (Pichia kluyveri FrootZen, Torulaspora delbrueckii Prelude, Williopsis saturnus var. mrakii NCYC2251 and Torulaspora delbrueckii Biodiva) were evaluated in green tea slurry fermentation. Each yeast showed different fermentation performances: strains Prelude and Biodiva utilized sucrose faster than the other two yeasts; strain NCYC2251 was the only species that metabolized xylose. Strain FrootZen increased the caffeine content significantly and strain Prelude showed the opposite trend, both at a statistical level, while theanine contents in four samples were relatively stable. Biodiva and FrootZen significantly improved polyphenols content and the oxygen radical absorbance capacity of fermented teas. Some endogenous volatiles such as ketones, lactones and aldehydes decreased to lower or undetected levels, but one of the key tea aroma compounds methyl salicylate increased by 34-fold and 100-fold in P. kluyveri and W. saturnus samples respectively. Therefore, green tea fermentation by appropriate non-Saccharomyces yeasts can enhance its antioxidant capacity and alter the aroma compound profile.


Assuntos
Camellia sinensis/microbiologia , Pichia/metabolismo , Saccharomycetales/metabolismo , Torulaspora/metabolismo , Cafeína/metabolismo , Camellia sinensis/química , Fermentação , Microbiologia de Alimentos , Glutamatos/metabolismo , Odorantes/análise , Chá/química , Chá/microbiologia , Xilose/metabolismo
6.
Food Res Int ; 136: 109452, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32846547

RESUMO

This study attempted to achieve coffee flavour biotransformation through controlled fermentation of sterilsed green coffee beans with a coculture of Saccharomyces cerevisiae and Pichia kluyveri (FYco) and a sequential inoculation of Lc. lactis subsp. cremoris and the yeast coculture (FLYco). Isoamyl acetate, 2-phenylethyl acetate, and ethyl octanoate were produced by 5.76, 1.35 and 0.54 mg/kg, respectively, in FYco fermented green coffee beans. Compared to the green coffee bean fermented by the yeast monocultures in previous study, FYco led to a 1.2- and 4.1-times elevation in production of isoamyl acetate and 2-phenylethyl acetate, respectively. FLYco further increased acetate ester production by more than 2 times relative to FYco. The esters produced in FYco and FLYco partially survived the roasting process and imparted the roasted coffees with considerable fruity and winey aromas. The lactic acid fermentation in FLYco increased the acidity in green coffee beans, which promoted the formation of caramel-smelling furfurals and preservation of acidity and sweetness in the roasted coffees. Apart from the mere additions of flavour modification from individual strains, the proper combination of multiple strains can result in synergistic effects that enhanced the modulating activities of individual strains and further enhance flavour complexity of the resulted coffee.


Assuntos
Lactobacillales , Saccharomyces cerevisiae , Café , Fermentação , Pichia
7.
Food Res Int ; 136: 109588, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32846616

RESUMO

Direct fermentations of sterilised green coffee beans by monocultures of Saccharomyces cerevisiae and Pichia kluyveri were investigated for coffee flavour biotransformation. During fermentation, fruity esters were generated in the green coffee beans by yeasts. 2-Phenylethyl acetate was elevated by 1.1 mg/kg and 0.03 mg/kg in P. kluyveri- and S. cerevisiae-fermented green beans, respectively, as compared to the untreated sample. Ethyl octanoate (0.51 mg/kg) and isoamyl acetate (1.69 mg/kg) only existed in S. cerevisiae- and P. kluyveri-fermented green beans, respectively. After roasting, higher levels of 2-phenylethyl acetate were detected in fermented coffees, and ethyl octanoate was found only in the S. cerevisiae-fermented sample, despite the loss of isoamyl acetate in P. kluyveri-fermented coffees during roasting. The fruity esters generated by the yeasts during green coffee bean fermentations were directly transferred to the volatile profiles formed after roasting and enhanced the fruity attribute in the roasted coffees, with a more noticeable effect observed from S. cerevisiae fermentation. Higher productions of N-heterocyclic volatiles occurred during roasting of S. cerevisiae-fermented coffees and contributed to elevated nutty and roasted aromas. S. cerevisiae and P. kluyveri are considered suitable starter cultures for controlled coffee flavour biotransformation through controlled fermentations of green coffee beans.


Assuntos
Café , Saccharomyces cerevisiae , Fermentação , Pichia
8.
J Food Sci ; 85(2): 306-315, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31976554

RESUMO

Wine yeast Saccharomyces cerevisiae 71B was used in fermentation of green tea to modulate the volatiles and nonvolatiles. After fermentation, higher alcohols, esters, and acids, such as isoamyl alcohol, isobutanol, ethyl octanoate, ethyl decanoate, octanoic, and decanoic acids were generated. Some key aroma compounds of tea including linalool, hotrienol, dihydroactinidiolide, and 2-phenylethanol increased significantly. Among these compounds, linalool and 2-phenylethanol increased by 1.3- and 10-fold, respectively, which impart floral and fruity notes to fermented green tea. Alkaloids including caffeine, theobromine, and theophylline were reduced significantly after fermentation, while the most important free amino acid in tea, theanine, was not metabolized by S. cerevisiae. Tea catechins decreased whereas gallic and caffeic acids increased significantly, resulting in the unchanged antioxidant capacity of the fermented green tea. Hence, this work highlighted the potential of using S. cerevisiae to modulate green tea aroma and nonvolatiles. PRACTICAL APPLICATION: A novel fermented tea is produced by yeast fermentation. Saccharomyces cerevisiae led to significant changes in tea volatiles and nonvolatiles. Antioxidant capacity remained stable after fermentation.


Assuntos
Camellia sinensis/microbiologia , Saccharomyces cerevisiae/metabolismo , Ácidos/análise , Ácidos/metabolismo , Álcoois/análise , Álcoois/metabolismo , Biotransformação , Camellia sinensis/metabolismo , Ésteres/análise , Ésteres/metabolismo , Fermentação , Odorantes/análise , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Chá/metabolismo
9.
Food Chem ; 302: 125370, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31442699

RESUMO

Four Arabica coffees (Brazil, Colombia, Ethiopia, and Guatemala) yield highly variant odours, attesting to the complexities of coffee aroma that command advanced analytical tools. In this study, their volatiles were extracted using solvent-assisted flavour evaporation (SAFE) and headspace solid-phase microextraction (HS-SPME). Due to matrix complexity, some trace odourants were detected in SAFE extracts by aroma extract dilution analysis (AEDA) but remained difficult to quantify by gas chromatography-mass spectrometry (GC-MS). This prompted the application of low energy electron ionisation (EI) coupled with GC-quadrupole time-of-flight (GC-QTOF). Optimal low EI GC-QTOF parameters (EI energy: 15 eV, acquisition rate: 3 Hz) were applied to achieve improved molecular ion signal intensity and reproducibility (relative standard deviation < 10%) across five compounds, which resulted in good linearity (R2 ≥ 0.999) and lowered detection levels (e.g. 0.025 ±â€¯0.005 ng/mL for 4-hydroxy-5-methyl-3(2H)-furanone). Therefore, this method potentially improves the measurement of trace odourants in complex matrices by increasing specificity and sensitivity.


Assuntos
Café/química , Análise de Alimentos/métodos , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Adulto , Brasil , Coffea/química , Colômbia , Etiópia , Feminino , Análise de Alimentos/estatística & dados numéricos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Guatemala , Humanos , Masculino , Pessoa de Meia-Idade , Olfatometria/métodos , Extratos Vegetais/química , Análise de Componente Principal , Reprodutibilidade dos Testes , Microextração em Fase Sólida/métodos , Paladar , Compostos Orgânicos Voláteis/isolamento & purificação
10.
J Sci Food Agric ; 99(1): 409-420, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29896755

RESUMO

BACKGROUND: Coffee flavor can be significantly influenced by microbial activities in spontaneous fermentation of coffee cherries. The potential of lactic acid bacteria for flavor modulation through controlled fermentation of green coffee beans has not been explored. RESULTS: Fermentation by Lactobacillus rhamnosus HN001 with and without 1% w/w glucose supplementation led to modification of flavor-related constituents in green coffee beans, which translated into modulation of coffee volatiles upon roasting. The lactic acid bacteria consumed almost all glucose and fructose, leaving sucrose behind. Amino acids and malic, citric, and succinic acids were partially catabolized. Glucose supplementation enhanced lactic acid production but repressed acetic acid formation. After roasting at 235 °C for 9 min, 12 min, and 15 min, the levels of furfurals in glucose-supplemented-fermented coffee were 10.5-, 2.7-, and 1.1-fold higher than those in the controls (nonsupplemented-unfermented coffee); furthermore, the levels of pyrazines in the controls were 11.9-, 10.1-, and 6.5-fold higher than those in the treated coffee. Glucose-supplemented fermentation yielded roasted coffee with stronger caramelic and burnt characteristics but weaker nutty notes. In roasted non-supplemented-fermented coffee, volatile production was generally reduced, resulting in a milder overall aroma. CONCLUSION: Lactic acid fermentation of green coffee beans is a new strategy for coffee flavor modulation, creating novel aroma characteristics. © 2018 Society of Chemical Industry.


Assuntos
Coffea/química , Culinária/métodos , Aromatizantes/química , Glucose/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Sementes/microbiologia , Compostos Orgânicos Voláteis/química , Coffea/microbiologia , Café/química , Fermentação , Aromatizantes/metabolismo , Humanos , Odorantes/análise , Sementes/química , Olfato , Compostos Orgânicos Voláteis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA