Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 8(2): e56020, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23457494

RESUMO

BACKGROUND: Colon carcinogenesis is a multistep process and it emanates from a series of molecular and histopathological alterations. Glycyrrhizic acid (GA) is a natural and major pentacyclic triterpenoid glycoside of licorice roots extracts. It has several pharmacological and biological properties such as anti-inflammatory, anti-viral, and anti-cancer. In the present study, we investigated the chemopreventive potential of GA against 1,2-dimethyhydrazine (DMH)-induced precancerous lesions i.e., aberrant crypt foci (ACF) and mucin depleted foci (MDF), and its role in regulating the hyperproliferation, inflammation, angiogenesis and apoptosis in the colon of Wistar rats. METHODS: Animals were divided into 5 groups. In group III, IV and V, GA was administered at the dose of 15 mg/kg b. wt. orally while in group II, III and IV, DMH was administered subcutaneously in the groin at the dose of 20 mg/kg b.wt once a week for first 5 weeks and animals were euthanized after 9 weeks. RESULTS: GA supplementation suppressed the development of precancerous lesions and it also reduced the infiltration of mast cells, suppressed the immunostaining of Ki-67, NF-kB-p65, COX-2, iNOS and VEGF while enhanced the immunostaining of p53, connexin-43, caspase-9 and cleaved caspase-3. GA treatment significantly attenuated the level of TNF-α and it also reduced the depletion of the mucous layer as well as attenuated the shifting of sialomucin to sulphomucin. CONCLUSION: Our findings suggest that GA has strong chemopreventive potential against DMH-induced colon carcinogenesis but further studies are warranted to elucidate the precise mechanism of action of GA.


Assuntos
Focos de Criptas Aberrantes/prevenção & controle , Anti-Inflamatórios/uso terapêutico , Anticarcinógenos/uso terapêutico , Colo/efeitos dos fármacos , Neoplasias Colorretais/prevenção & controle , Ácido Glicirrízico/uso terapêutico , Focos de Criptas Aberrantes/induzido quimicamente , Focos de Criptas Aberrantes/imunologia , Focos de Criptas Aberrantes/patologia , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Conexina 43/análise , Conexina 43/imunologia , Dimetilidrazinas , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Mastócitos/patologia , Mucinas/análise , Ratos , Ratos Wistar , Sialomucinas/análise , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/imunologia
2.
Br J Nutr ; 110(4): 699-710, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23402272

RESUMO

Diosmin (DM) is a naturally occurring flavone and has been found to possess numerous therapeutic properties. In this study, we used DM as a protective agent against the nephrotoxic effects of the environmental toxicant trichloroethylene (TCE). Male Wistar rats were divided into five groups (I-V, n 6). Groups II, III and IV received an oral administration of TCE at a dose of 1000 mg/kg body weight for twenty consecutive days. The animals in groups II and III received an oral treatment of DM at doses of 20 and 40 mg/kg body weight, respectively, for twenty consecutive days, while groups I and V were given maize oil (5 ml/kg body weight and DM 40 mg/kg body weight, respectively) for 20 d. The protective effects of DM on TCE-induced oxidative stress and caspase-dependent apoptosis were investigated by assaying oxidative stress biomarkers, lipid peroxidation (LPO), serum toxicity markers, alkaline unwinding assay, caspase-3, -7 and -9, Bax and p53 expression. Oral administration of TCE in rats enhanced renal LPO, depleted glutathione content and antioxidant enzymes, induced DNA strand breaks (P<0·001), modulated the expression of Bax and p53 protein and induced the expression of caspase-3, -7 and -9. Co-treatment with DM prevented oxidative stress by restoring the levels of antioxidant enzymes; furthermore, a significant dose-dependent decrease in DNA disintegration and kidney toxicity markers such as blood urea N, creatinine, lactate dehydrogenase and kidney injury molecule-1 was observed. DM also effectively decreased the TCE-induced up-regulation of Bax and p53. Data from the present study establish the protective role of DM against TCE-induced renal damage.


Assuntos
Diosmina/farmacologia , Rim/efeitos dos fármacos , Tricloroetileno/toxicidade , Administração Oral , Animais , Antioxidantes/metabolismo , Caspases/metabolismo , Catalase/metabolismo , Dano ao DNA , Suplementos Nutricionais , Rim/lesões , Peroxidação de Lipídeos , Masculino , Estresse Oxidativo , Substâncias Protetoras/farmacologia , Ratos , Ratos Wistar , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo
3.
Mol Cell Biochem ; 374(1-2): 49-59, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23135684

RESUMO

The growth and development of prostate gland is governed by testosterone. Testosterone helps in maintaining the adipose tissue stores of the body. It is well documented that with advancing age there has been a gradual decline in testosterone levels. Our aim was to study the protective role of daidzein on flutamide-induced androgen deprivation on matrix degrading genes, lipid profile and oxidative stress in Wistar rats. Sub-chronic (60 days) flutamide (30 mg/kg b.wt) administration resulted in marked increase in expressions of matrix degrading genes [matrix metalloproteases 9 and urokinase plasminogen activation receptor]. Additionally, it increased the levels of low density lipoproteins, total cholesterol, triglycerides, and lowered the levels of high density lipoproteins and endogenous antioxidant levels. Oral administration of daidzein (20 and 60 mg/kg b.wt) restituted the levels to normal. Daidzein administration resulted in amelioration of the prostate atrophy, degeneracy and invasiveness induced by flutamide. Our findings suggest that the daidzein may be given as dietary supplement to patients who are on androgen deprivation therapy, to minimize the adverse effects related to it and also retarding susceptibility of patients to cardiovascular diseases.


Assuntos
Isoflavonas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/biossíntese , Metaloproteinase 9 da Matriz/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Antagonistas de Androgênios/administração & dosagem , Animais , Atrofia/tratamento farmacológico , Catalase/metabolismo , Colesterol/biossíntese , Flutamida/administração & dosagem , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Lipoproteínas HDL/biossíntese , Lipoproteínas LDL/biossíntese , Masculino , Orquiectomia , Estresse Oxidativo/efeitos dos fármacos , Fitoestrógenos/farmacologia , Próstata/patologia , Ratos , Ratos Wistar , Triglicerídeos/biossíntese
4.
Toxicology ; 302(2-3): 266-74, 2012 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22981962

RESUMO

It is well established that aberrant production of inflammatory mediators has been associated with most the toxic manifestations and the genesis of different chronic diseases including cancer. The basic aim of the present study is to investigate the effects of soy isoflavones (SIF) on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cutaneous inflammatory responses and to explore the underlying molecular mechanisms. We have studied the protective effects of SIF against TPA induced oxidative stress, pro-inflammatory cytokines level, activation of NF-κB, expression of COX-2 and ki-67 in mouse skin. Animals were divided into five groups I-V (n=6). Groups II, III and IV received topical application of TPA at the dose of 10 nmol/0.2 ml of acetone/animal/day, for 2 days. Animals of the groups III and IV were pre-treated with SIF 1.0 µg (D1) and 2.0 µg (D2) topically 30 min prior to each TPA administration, while groups I and V were given acetone (0.2 ml) and SIF (D2), respectively. We have found that SIF pretreatment significantly inhibited TPA induced oxidative stress, proinflammatory cytokines production and activation of NF-κB. SIF also inhibited the expression of COX-2 and ki-67. Histological findings further supported the protective effects of SIF against TPA-induced cutaneous damage. Thus, our results suggest that inhibitory effect of SIF on TPA-induced cutaneous inflammation includes inhibition of proinflammatory cytokines, attenuation of oxidative stress, activation of NF-κB and expression of COX-2.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Genisteína/farmacologia , Isoflavonas/farmacologia , NF-kappa B/metabolismo , Pele/efeitos dos fármacos , Acetato de Tetradecanoilforbol/efeitos adversos , Animais , Proliferação de Células/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Dermatite/tratamento farmacológico , Dermatite/etiologia , Feminino , Inflamação/tratamento farmacológico , Inflamação/etiologia , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Camundongos , NF-kappa B/genética , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Pele/patologia , Glycine max/química
5.
Br J Nutr ; 108(9): 1574-85, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-22309980

RESUMO

Cisplatin (cis-diamminedichloroplatinum (II) (CDDP)) is a commonly used chemotherapeutic drug for the treatment of numerous forms of cancer, but it has pronounced adverse effects, namely nephrotoxicity, ototoxicity, neurotoxicity, hepatotoxicity, diarrhoea and nausea. CDDP-induced emesis and diarrhoea are also marked toxicities that may be due to intestinal injury. Chrysin (5,7-dihydroxyflavone), a natural flavone commonly found in many plants, possesses multiple biological activities, such as antioxidant and anti-inflammatory properties. In the present study, we investigated the protective effect of chrysin against CDDP-induced jejunal toxicity. The plausible mechanism of CDDP-induced jejunal toxicity includes oxidative stress, p53 and apoptosis via up-regulating the expression of caspase-6 and -3. Chrysin was administered to Wistar rats orally in maize oil. A single intraperitoneal injection of CDDP was given and the animals were killed after 24 h of CDDP injection. Chrysin ameliorated CDDP-induced lipid peroxidation, increase in xanthine oxidase activity, glutathione depletion, decrease in antioxidant (catalase, glutathione reductase, glutathione peroxidase and glucose-6-phosphate dehydrogenase) and phase-II detoxifying (glutathione-S-transferase and quinone reductase) enzyme activities. Chrysin attenuated CDDP-induced goblet cell disintegration, enhanced expression of p53 and apoptotic tissue damage. Histological findings further substantiated the protective effects of chrysin against CDDP-induced damage in the jejunum. The results of the present study demonstrate that oxidative stress and apoptosis are closely associated with CDDP-induced toxicity and chrysin shows the protective efficacy against CDDP-induced jejunum toxicity possibly via attenuating the oxidative stress and apoptotic tissue damage.


Assuntos
Antineoplásicos/efeitos adversos , Antioxidantes/metabolismo , Cisplatino/efeitos adversos , Flavonoides/metabolismo , Células Caliciformes/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antidiarreicos/metabolismo , Antidiarreicos/uso terapêutico , Antieméticos/metabolismo , Antieméticos/uso terapêutico , Antineoplásicos/antagonistas & inibidores , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Cisplatino/antagonistas & inibidores , Suplementos Nutricionais , Flavonoides/uso terapêutico , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Jejuno/metabolismo , Jejuno/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Oxirredutases/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA