Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 192(18): 4776-85, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20601476

RESUMO

MSMEG_0220 from Mycobacterium smegmatis, the ortholog of the Rv0183 gene from M. tuberculosis, recently identified and characterized as encoding a monoacylglycerol lipase, was cloned and expressed in Escherichia coli. The recombinant protein (rMSMEG_0220), which exhibits 68% amino acid sequence identity with Rv0183, showed the same substrate specificity and similar patterns of pH-dependent activity and stability as the M. tuberculosis enzyme. rMSMEG_0220 was found to hydrolyze long-chain monoacylglycerol with a specific activity of 143 +/- 6 U mg(-1). Like Rv0183 in M. tuberculosis, MSMEG_0220 was found to be located in the cell wall. To assess the in vivo role of the homologous proteins, an MSMEG_0220 disrupted mutant of M. smegmatis (MsDelta0220) was produced. An intriguing change in the colony morphology and in the cell interaction, which were partly restored in the complemented mutant containing either an active (ComMsDelta0220) or an inactive (ComMsDelta0220S111A) enzyme, was observed. Growth studies performed in media supplemented with monoolein showed that the ability of both MsDelta0220 and ComMsDelta0220S111A to grow in the presence of this lipid was impaired. Moreover, studies of the antimicrobial susceptibility of the MsDelta0220 strain showed that this mutant is more sensitive to rifampin and more resistant to isoniazid than the wild-type strain, pointing to a critical structural role of this enzyme in mycobacterial physiology, in addition to its function in the hydrolysis of exogenous lipids.


Assuntos
Monoacilglicerol Lipases/metabolismo , Mycobacterium smegmatis/citologia , Mycobacterium smegmatis/enzimologia , Antibacterianos/farmacologia , Western Blotting , Cloranfenicol/farmacologia , Eletroforese em Gel de Poliacrilamida , Teste de Complementação Genética , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Monoacilglicerol Lipases/genética , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/genética , Novobiocina/farmacologia , Rifampina/farmacocinética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato
2.
Mol Microbiol ; 60(2): 312-30, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16573683

RESUMO

Two-component signal transduction systems (2-CS) play an important role in bacterial pathogenesis. In the work presented here, we have studied the effects of a mutation in the Mycobacterium tuberculosis (Mtb) PhoPR 2-CS on the pathogenicity, physiology and global gene expression of this bacterial pathogen. Disruption of PhoPR causes a marked attenuation of growth in macrophages and mice and prevents growth in low-Mg2+ media. The inability to grow in THP-1 macrophages can be partially overcome by the addition of excess Mg2+ during infection. Global transcription assays demonstrate PhoP is a positive transcriptional regulator of several genes, but do not support the hypothesis that the Mtb PhoPR system is sensing Mg2+ starvation, as is the case with the Salmonella typhimurium PhoPQ 2-CS. The genes that were positively regulated include those found in the pks2 and the msl3 gene clusters that encode enzymes for the biosynthesis of sulphatides and diacyltrehalose and polyacyltrehalose respectively. Complementary biochemical studies, in agreement with recent results from another group, indicate that these complex lipids are also absent from the phoP mutant, and the lack of these components in its cell envelope may indirectly cause the mutant's high-Mg2+ growth requirement. The experiments reported here provide functional evidence for the PhoPR 2-CS involvement in Mtb pathogenesis, and they suggest that a major reason for the attenuation observed in the phoP mutant is the absence of certain complex lipids that are known to be important for virulence.


Assuntos
Proteínas de Bactérias/fisiologia , Regulação Bacteriana da Expressão Gênica , Lipídeos/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Lipídeos/análise , Lipídeos/biossíntese , Macrófagos/microbiologia , Magnésio/farmacologia , Metais Pesados/toxicidade , Camundongos , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/genética , Deleção de Sequência , Transdução de Sinais/genética , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA