Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35563564

RESUMO

The intestinal microbiome composition and dietary supplementation with psychobiotics can result in neurochemical alterations in the brain, which are possible due to the presence of the brain-gut-microbiome axis. In the present study, magnetic resonance spectroscopy (MRS) and behavioural testing were used to evaluate whether treatment with Lacticaseibacillus rhamnosus JB-1 (JB­1) bacteria alters brain metabolites' levels and behaviour during continuous exposure to chronic stress. Twenty Wistar rats were subjected to eight weeks of a chronic unpredictable mild stress protocol. Simultaneously, half of them were fed with JB-1 bacteria, and the second half was given a daily placebo. Animals were examined at three-time points: before starting the stress protocol and after five and eight weeks of stress onset. In the elevated plus maze behavioural test the placebo group displayed increased anxiety expressed by almost complete avoidance of exploration, while the JB-1 dietary supplementation mitigated anxiety which resulted in a longer exploration time. Hippocampal MRS measurements demonstrated a significant decrease in glutamine + glutathione concentration in the placebo group compared to the JB-1 bacteria-supplemented group after five weeks of stress. With the progression of stress the decrease of glutamate, glutathione, taurine, and macromolecular concentrations were observed in the placebo group as compared to baseline. The level of brain metabolites in the JB-1-supplemented rats were stable throughout the experiment, with only the taurine level decreasing between weeks five and eight of stress. These data indicated that the JB-1 bacteria diet might stabilize levels of stress-related neurometabolites in rat brain and could prevent the development of anxiety/depressive-like behaviour.


Assuntos
Lacticaseibacillus rhamnosus , Animais , Comportamento Animal , Ingestão de Alimentos , Glutationa/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Ratos , Ratos Wistar , Estresse Psicológico , Taurina/metabolismo
2.
Nutr Res ; 82: 44-57, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32961399

RESUMO

Major depressive disorder is a stress-related disease associated with brain metabolic dysregulation in the glutamine-glutamate/γ-aminobutyric acid (Gln-Glu/GABA) cycle. Recent studies have demonstrated that microbiome-gut-brain interactions have the potential to influence mental health. The hypothesis of this study was that Lactobacillus rhamnosus JB-1 (LR-JB1™) dietary supplementation has a positive impact on neuro-metabolism which can be quantified in vivo using magnetic resonance spectroscopy (MRS). A rat model of depressive-like disorder, chronic unpredictable mild stress (CUMS), was used. Baseline comparisons of MRS and behavior were obtained in a control group and in a stressed group subjected to CUMS. Of the 22 metabolites measured using MRS, stressed rats had significantly lower concentrations of GABA, glutamate, glutamine + glutathione, glutamate + glutamine, total creatine, and total N-acetylaspartate (tNAA). Stressed rats were then separated into 2 groups and supplemented with either LR-JB1™ or placebo and re-evaluated after 4 weeks of continued CUMS. The LR-JB1™ microbiotic diet restored these metabolites to levels previously observed in controls, while the placebo diet resulted in further significant decrease of glutamate, total choline, and tNAA. LR-JB1™ treated animals also exhibited calmer and more relaxed behavior, as compared with placebo treated animals. In summary, significant cerebral biochemical downregulation of major brain metabolites following prolonged stress were measured in vivo using MRS, and these decreases were reversed using a microbiotic dietary supplement of LR-JB1™, even in the presence of continued stress, which also resulted in a reduction of stress-induced behavior in a rat model of depressive-like disorder.


Assuntos
Encéfalo/metabolismo , Transtorno Depressivo/dietoterapia , Suplementos Nutricionais , Lacticaseibacillus rhamnosus , Estresse Psicológico/dietoterapia , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Comportamento Animal , Colina/metabolismo , Transtorno Depressivo/metabolismo , Progressão da Doença , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Glutationa/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Ratos , Ratos Wistar , Estresse Psicológico/metabolismo , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA