RESUMO
Glioblastoma is one the most aggressive primary brain tumors in adults, and, despite the fact that radiation and chemotherapy after surgical approaches have been the treatments increasing the survival rates, the prognosis of patients remains poor. Today, the attention is focused on highlighting complementary treatments that can be helpful in improving the classic therapeutic approaches. It is known that 1α,25(OH)2 vitamin D3, a molecule involved in bone metabolism, has many serendipidy effects in cells. It targets normal and cancer cells via genomic pathway by vitamin D3 receptor or via non-genomic pathways. To interrogate possible functions of 1α,25(OH)2 vitamin D3 in multiforme glioblastoma, we used three cell lines, wild-type p53 GL15 and mutant p53 U251 and LN18 cells. We demonstrated that 1α,25(OH)2 vitamin D3 acts via vitamin D receptor in GL15 cells and via neutral sphingomyelinase1, with an enrichment of ceramide pool, in U251 and LN18 cells. Changes in sphingomyelin/ceramide content were considered to be possibly responsible for the differentiating and antiproliferative effect of 1α,25(OH)2 vitamin D in U251 and LN18 cells, as shown, respectively, in vitro by immunofluorescence and in vivo by experiments of xenotransplantation in eggs. This is the first time 1α,25(OH)2 vitamin D3 is interrogated for the response of multiforme glioblastoma cells in dependence on the p53 mutation, and the results define neutral sphingomyelinase1 as a signaling effector.
RESUMO
BACKGROUND: Sphingomyelin plays very important roles in cell function under physiological and pathological conditions. Physical and chemical stimuli produce reactive oxygen species that stimulate acid sphingomyelinase to induce apoptosis. Antioxidant plants of the traditional Chinese Pharmacopoeia, such as Lycium Barbarum and Lycium Chinense, have become increasingly popular in Western countries. We investigated the effects of Lycium Chinense on acid sphingomyelinase and sphingomyelin species in relation to gene expression. METHODS: We prepared Lycium Chinense berry extracts and evaluated their antioxidant properties. Increasing amount of extracts was used to test cytotoxic and genotoxic effect on HepG2 cells. Gene expression, protein amount and enzyme activity of acid sphingomyelinase were tested by RT-PCR, immunoblotting and enzymatic activity assay, respectively. Sphingomyelin species were analyzed by UFLC MS/MS. A panel of 96 genes involved in oxidative stress, proliferation, apoptosis and cancer was used to test the effect of LC on gene expression. GLRX2, RNF7, and PTGS1 proteins were analyzed by immunoblotting. RESULTS: We showed that Lycium Chinense berries have high antioxidant properties, have an IC50value of 9.55 mg/mL, do not induce genotoxic effect and maintain high level of cell viability. The berry extracts inhibit acid sphingomyelinase activity and increase both very long fatty acid sphingomyelin species and unsaturated fatty acid sphingomyelin species. Among 96 genes, Lycium Chinense berries up-regulate Glutaredoxin 2 and Ring Finger Protein 7 genes and proteins, able to protect cells from apoptosis. Intrigantly, Lycium Chinense berries down-regulates Prostaglandin H synthase 1 gene but the protein is not expressed in HepG2 cells. CONCLUSION: The results identify acid sphingomyelinase as a novel target of Lycium Chinense berries to decrease saturated/unsaturated fatty acid sphingomyelin ratio, known to be useful for cell health. Consistent with these data, the berries regulate specifically gene expression to protect cells from apoptosis.
Assuntos
Sobrevivência Celular/efeitos dos fármacos , Esfingomielina Fosfodiesterase/biossíntese , Esfingomielinas/metabolismo , Antioxidantes/administração & dosagem , Antioxidantes/química , Frutas/química , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Lycium/química , Medicina Tradicional Chinesa , Extratos Vegetais/administração & dosagem , Extratos Vegetais/químicaRESUMO
In the typical NH3-SCR temperature range (100-500 °C), ammonia is one of the main adsorbed species on acidic sites of Cu-SSZ-13 catalyst. Therefore, the study of adsorbed ammonia at high temperature is a key step for the understanding of its role in the NH3-SCR catalytic cycle. We employed different spectroscopic techniques to investigate the nature of the different complexes occurring upon NH3 interaction. In particular, FTIR spectroscopy revealed the formation of different NH3 species, that is, (i) NH3 bonded to copper centers, (ii) NH3 bonded to Brønsted sites, and (iii) NH4(+)·nNH3 associations. XANES and XES spectroscopy allowed us to get an insight into the geometry and electronic structure of Cu centers upon NH3 adsorption, revealing for the first time in Cu-SSZ-13 the presence of linear Cu(+) species in Ofw-Cu-NH3 or H3N-Cu-NH3 configuration.