Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Biodivers ; 20(9): e202300903, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37505806

RESUMO

Many plants have been known to be contaminated and accumulate plasticizers from the environment, including water sources, soil, and atmosphere. Plasticizers are used to confer elasticity and flexibility to various fiber and plastic products. Consumption of plasticizers can lead to many adverse effects on human health, including reproductive and developmental toxicity, endocrine disruption, and cancer. Herein, we report for the first time that two plasticizers, bis(2-ethylhexyl) terephthalate (DEHT) and bis(2-ethylhexyl) phthalate (DEHP), have been isolated from the leaves of Capparis spinosa L. (the caper bush), a plant that is widely used in food seasonings and traditional medicine. 297 mg/kg of DEHT and 48 mg/kg of DEHP were isolated from dried and grounded C. spinosa L. leaves using column chromatography and semi-preparative high-performance liquid chromatography. Our study adds to the increase in the detection of plasticizers in our food and medicinal plants and to the alarming concern about their potential adverse effects on human health.


Assuntos
Capparis , Dietilexilftalato , Humanos , Plastificantes/toxicidade , Plastificantes/análise , Dietilexilftalato/toxicidade , Dietilexilftalato/análise , Plantas , Folhas de Planta/química
2.
Chem Biodivers ; 19(10): e202200300, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36064949

RESUMO

Capparis spinosa L., commonly known as the caper bush, is an aromatic plant growing in most of the Mediterranean basin and some parts of Western Asia. C. spinosa L. has been utilized as a medicinal plant for quite a long time in conventional phytomedicine. Polyphenols and numerous bioactive chemicals extracted from C. spinosa L. display various therapeutic properties that have made this plant a target for further research as a health promoter. This review is meant to systematically summarize the traditional uses, the phytochemical composition of C. spinosa L., and the diverse pharmacological activities, as well as the synthetic routes to derivatives of some identified chemical components for the improvement of biological activities and enhancement of pharmacokinetic profiles. This review also addresses the benefits of C. spinosa L. in adapting to climate change and the socio-economic value that C. spinosa L. brings to the rural economies of many countries.


Assuntos
Capparis , Plantas Medicinais , Capparis/química , Polifenóis/farmacologia , Plantas Medicinais/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Fatores Socioeconômicos
3.
Molecules ; 26(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34299400

RESUMO

The goal of this study was to assess the pharmacological effects of black tea (Camellia sinensis var. assamica) water extract on human kinin-forming enzymes in vitro. Tea is a highly consumed beverage in the world. Factor XII (FXII, Hageman factor)-independent- and -dependent activation of prekallikrein to kallikrein leads to the liberation of bradykinin (BK) from high-molecular-weight kininogen (HK). The excessive BK production causes vascular endothelial and nonvascular smooth muscle cell permeability, leading to angioedema. The prevalence of angiotensin-converting enzyme inhibitor (ACEI)-induced angioedema appears to be through BK. Both histamine and BK are potent inflammatory mediators. However, the treatments for histamine-mediated angioedema are unsuitable for BK-mediated angioedema. We hypothesized that long-term consumption of tea would reduce bradykinin-dependent processes within the systemic and pulmonary vasculature, independent of the anti-inflammatory actions of polyphenols. A purified fraction of the black tea water extract inhibited both kallikrein and activated FXII. The black tea water extracts inhibited factor XII-induced cell migration and inhibited the production of kallikrein on the endothelial cell line. We compared the inhibitory effects of the black tea water extract and twenty-three well-known anti-inflammatory medicinal herbs, in inhibiting both kallikrein and FXII. Surprisingly, arjunglucoside II specifically inhibited the activated factor XII (FXIIa), but not the kallikrein and the activated factor XI. Taken together, the black tea water extract exerts its anti-inflammatory effects, in part, by inhibiting kallikrein and activated FXII, which are part of the plasma kallikrein-kinin system (KKS), and by decreasing BK production. The inhibition of kallikrein and activated FXII represents a unique polyphenol-independent anti-inflammatory mechanism of action for the black tea.


Assuntos
Bradicinina/metabolismo , Camellia/química , Endotélio Vascular/efeitos dos fármacos , Fator XII/antagonistas & inibidores , Sistema Calicreína-Cinina/efeitos dos fármacos , Extratos Vegetais/farmacologia , Artéria Pulmonar/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Endotélio Vascular/metabolismo , Humanos , Artéria Pulmonar/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA