Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 38(41): 12551-12561, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36194692

RESUMO

Protein-polysaccharide composite materials have generated much interest due to their potential use in medical science and biotechnology. A comprehensive understanding of the assembly mechanism and the mesoscale architecture is needed for fabricating protein-polysaccharide composite materials with desired properties. In this study, complex assemblies were built on silica surfaces through a layer-by-layer (LbL) approach using bovine beta-lactoglobulin variant A (ßLgA) and pectin as model protein and polysaccharide, respectively. We demonstrated the combined use of quartz crystal microbalance with dissipation monitoring (QCM-D) and neutron reflectometry (NR) for elucidating the assembly mechanism as well as the internal architecture of the protein-polysaccharide complexes formed at the solid-liquid interface. Our results show that ßLgA and pectin interacted with each other and formed a cohesive matrix structure at the interface consisting of intertwined pectin chains that were cross-linked by ßLgA-rich domains. Although the complexes were fabricated in an LbL fashion, the complexes appeared to be relatively homogeneous with ßLgA and pectin molecules spatially distributed within the matrix structure. Our results also demonstrate that the density of ßLgA-pectin complex assemblies increased with both the overall and local charge density of pectin molecules. Therefore, the physical properties of the protein-polysaccharide matrix structure, including density and level of hydration, can be tuned by using polysaccharides with varying charge patterns, thus promoting the development of composite materials with desired properties.


Assuntos
Pectinas , Polissacarídeos , Animais , Bovinos , Concentração de Íons de Hidrogênio , Lactoglobulinas/química , Pectinas/química , Polissacarídeos/química , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA