Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 11(9)2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438620

RESUMO

Oligosaccharides (OS) are commonly added to infant formulas, however, their physiological impact, particularly on adult health programming, is poorly described. In adult animals, OS modify microbiota and stimulate colonic fermentation and enteroendocrine cell (EEC) activity. Since neonatal changes in microbiota and/or EEC density could be long-lasting and EEC-derived peptides do regulate short-term food intake, we hypothesized that neonatal OS consumption could modulate early EECs, with possible consequences for adult eating behavior. Suckling rats were supplemented with fructo-oligosaccharides (FOS), beta-galacto-oligosaccharides/inulin (GOS/In) mix, alpha-galacto-oligosaccharides (αGOS) at 3.2 g/kg, or a control solution (CTL) between postnatal day (PND) 5 and 14/15. Pups were either sacrificed at PND14/15 or weaned at PND21 onto standard chow. The effects on both microbiota and EEC were characterized at PND14/15, and eating behavior at adulthood. Very early OS supplementation drastically impacted the intestinal environment, endocrine lineage proliferation/differentiation particularly in the ileum, and the density of GLP-1 cells and production of satiety-related peptides (GLP-1 and PYY) in the neonatal period. However, it failed to induce any significant lasting changes on intestinal microbiota, enteropeptide secretion or eating behavior later in life. Overall, the results did not demonstrate any OS programming effect on satiety peptides secreted by L-cells or on food consumption, an observation which is a reassuring outlook from a human perspective.


Assuntos
Envelhecimento/fisiologia , Comportamento Alimentar , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Animais , Animais Recém-Nascidos , Bactérias/classificação , Bactérias/genética , Suplementos Nutricionais , Conteúdo Gastrointestinal , Masculino , Oligossacarídeos/administração & dosagem , RNA Ribossômico 16S , Ratos , Ratos Sprague-Dawley , Paladar
2.
J Nutr Biochem ; 55: 104-112, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29413485

RESUMO

Intrauterine growth restriction (IUGR) can affect the structure and function of the intestinal barrier and increase digestive disease risk in adulthood. Using the rat model of maternal dietary protein restriction (8% vs. 20%), we found that the colon of IUGR offspring displayed decreased mRNA expression of epithelial barrier proteins MUC2 and occludin during development. This was associated with increased mRNA expression of endoplasmic reticulum (ER) stress marker XBP1s and increased colonic permeability measured in Ussing chambers. We hypothesized that ER stress contributes to colonic barrier alterations and that perinatal supplementation of dams with ER stress modulators, phenylbutyrate and glutamine (PG) could prevent these defects in IUGR offspring. We first demonstrated that ER stress induction by tunicamycin or thapsigargin increased the permeability of rat colonic tissues mounted in Ussing chamber and that PG treatment prevented this effect. Therefore, we supplemented the diet of control and IUGR dams with PG during gestation and lactation. Real-time polymerase chain reaction and histological analysis of colons from 120-day-old offspring revealed that perinatal PG treatment partially prevented the increased expression of ER stress markers but reversed the reduction of crypt depth and goblet cell number in IUGR rats. In dextran sodium sulfate-induced injury and recovery experiments, the colon of IUGR rats without perinatal PG treatment showed higher XBP1s mRNA levels and histological scores of inflammation than IUGR rats with perinatal PG treatment. In conclusion, these data suggest that perinatal supplementation with PG could alleviate ER stress and prevent epithelial barrier dysfunction in IUGR offspring.


Assuntos
Colo/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Retardo do Crescimento Fetal , Glutamina/farmacologia , Fenilbutiratos/farmacologia , Animais , Animais Recém-Nascidos , Colite/tratamento farmacológico , Colite/patologia , Colo/patologia , Colo/fisiologia , Suplementos Nutricionais , Estresse do Retículo Endoplasmático/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Gravidez , Ratos Sprague-Dawley , Proteína 1 de Ligação a X-Box/genética
3.
J Nutr Biochem ; 23(2): 140-52, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21429728

RESUMO

Intrauterine growth restriction (IUGR) due to maternal protein restriction is associated in rats with an alteration in hypothalamic centers involved in feeding behaviour. In order to gain insight into the mechanism of perinatal maternal undernutrition in the brain, we used proteomics approach to identify hypothalamic proteins that are altered in their expression following protein restriction in utero. We used an animal model in which restriction of the protein intake of pregnant rats (8% vs. 20%) produces IUGR pups which were randomized to a nursing regimen leading to either rapid or slow catch-up growth. We identified several proteins which allowed, by multivariate analysis, a very good discrimination of the three groups according to their perinatal nutrition. These proteins were related to energy-sensing pathways (Eno 1, E(2)PDH, Acot 1 and Fabp5), redox status (Bcs 1L, PrdX3 and 14-3-3 protein) or amino acid pathway (Acy1) as well as neurodevelopment (DRPs, MAP2, Snca). In addition, the differential expressions of several key proteins suggested possible shunts towards ketone-body metabolism and lipid oxidation, providing the energy and carbon skeletons necessary to lipogenesis. Our results show that maternal protein deprivation during pregnancy only (IUGR with rapid catch-up growth) or pregnancy and lactation (IUGR with slow postnatal growth) modulates numerous metabolic pathways resulting in alterations of hypothalamic energy supply. As several of these pathways are involved in signalling, it remains to be determined whether hypothalamic proteome adaptation of IUGR rats in response to different postnatal growth rates could also interfere with cerebral plasticity or neuronal maturation.


Assuntos
Retardo do Crescimento Fetal/metabolismo , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Plasticidade Neuronal , Proteínas/metabolismo , Animais , Animais Recém-Nascidos , Peso ao Nascer , Dieta com Restrição de Proteínas/efeitos adversos , Feminino , Lactação/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA