Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neuroendocrinol ; 34(7): e13165, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35833423

RESUMO

Glucocorticoids (GC) are prescribed for periods > 3 months to 1%-3% of the UK population; 10%-50% of these patients develop hypothalamus-pituitary-adrenal (HPA) axis suppression, which may last over 6 months and is associated with morbidity and mortality. Recovery of the pituitary and hypothalamus is necessary for recovery of adrenal function. We developed a mouse model of dexamethasone (DEX)-induced HPA axis dysfunction aiming to further explore recovery in the pituitary. Adult male wild-type C57BL6/J or Pomc-eGFP transgenic mice were randomly assigned to receive DEX (approximately 0.4 mg kg-1 bodyweight day-1 ) or vehicle via drinking water for 4 weeks following which treatment was withdrawn and tissues were harvested after another 0, 1, and 4 weeks. Corticotrophs were isolated from Pomc-eGFP pituitaries using fluorescence-activated cell sorting, and RNA extracted for RNA-sequencing. DEX treatment suppressed corticosterone production, which remained partially suppressed at least 1 week following DEX withdrawal. In the adrenal, Hsd3b2, Cyp11a1, and Mc2r mRNA levels were significantly reduced at time 0, with Mc2r and Cyp11a1 remaining reduced 1 week following DEX withdrawal. The corticotroph transcriptome was modified by DEX treatment, with some differences between groups persisting 4 weeks following withdrawal. No genes supressed by DEX exhibited ongoing attenuation 1 and 4 weeks following withdrawal, whereas only two genes were upregulated and remained so following withdrawal. A pattern of rebound at 1 and 4 weeks was observed in 14 genes that increased following suppression, and in six genes that were reduced by DEX and then increased. Chronic GC treatment may induce persistent changes in the pituitary that may influence future response to GC treatment or stress.


Assuntos
Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Hormônio Adrenocorticotrópico/metabolismo , Animais , Enzima de Clivagem da Cadeia Lateral do Colesterol , Corticosterona , Corticotrofos/metabolismo , Dexametasona/farmacologia , Glucocorticoides , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/metabolismo , Masculino , Camundongos , Sistema Hipófise-Suprarrenal/metabolismo , Pró-Opiomelanocortina/genética , RNA
2.
Endocrinology ; 159(10): 3524-3535, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30020429

RESUMO

More than 60 years ago, Geoffrey Harris described his "neurohumoral theory," in which the regulation of pituitary hormone secretion was a "simple" hierarchal relationship, with the hypothalamus as the controller. In models based on this theory, the electrical activity of hypothalamic neurons determines the release of hypophysiotropic hormones into the portal circulation, and the pituitary simply responds with secretion of a pulse of hormone into the bloodstream. The development of methodologies allowing the monitoring of the activities of members of the hypothalamic-vascular-pituitary unit is increasingly allowing dissection of the mechanisms generating hypothalamic and pituitary pulses. These have revealed that whereas hypothalamic input is required, its role as a driver of pulsatile pituitary hormone secretion varies between pituitary axes. The organization of pituitary cells has a key role in the modification of their response to hypophysiotropic factors that can lead to a memory of previous demand and enhanced function. Feedback can lead to oscillatory hormone output that is independent of pulses of hypophysiotropic factors and instead, results from the temporal relationship between pituitary output and target organ response. Thus, the mechanisms underlying the generation of pulses cannot be generalized, and the circularity of feedforward and feedback interactions must be considered to understand both normal physiological function and pathology. We describe some examples of the clinical implications of recognizing the importance of the pituitary and target organs in pulse generation and suggest avenues for future research in both the short and long term.


Assuntos
Hipotálamo/metabolismo , Neurônios/metabolismo , Hipófise/metabolismo , Hormônios Adeno-Hipofisários/metabolismo , Animais , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Modelos Biológicos , Sistema Hipófise-Suprarrenal/metabolismo
3.
FASEB J ; 32(9): 4791-4797, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29596024

RESUMO

Prolactin (PRL), whose principal role is regulation of lactation, is mainly synthesized and secreted by lactotroph anterior pituitary cells. Its signaling is exerted via a transmembrane PRL receptor (PRLR) expressed in a wide variety of tissues, including the anterior pituitary. Dopamine, which is secreted by tuberoinfundibular hypothalamic neurons, is the major inhibitory regulator of prolactin secretion. Although PRL is well established to stimulate hypothalamic dopamine secretion, thereby exerting a negative feedback regulation on its own release, autocrine or paracrine actions of PRL on lactotroph cells have also been suggested. Within the pituitary, PRL may inhibit both lactotroph proliferation and secretion, but in vivo evaluation of these putative functions is limited. To determine whether the autocrine actions of prolactin have a significant role in the physiologic function of lactotrophs in vivo, we examined the consequences of conditional deletion of Prlr in lactotroph cells using a novel mouse line with loxP sites flanking the Prlr gene ( Prlrlox/lox) and Cre-recombinase (Cre) expressed under the control of the pituitary-specific Prl promoter. Prlrlox/lox/Prl-Cre mice have normal PRL levels and did not develop any pituitary lactotroph adenoma, even at 20 mo of age. Nevertheless, Prlrlox/lox/Prl-Cre mice displayed an increased dopaminergic inhibitory tone compared with control Prlrlox/lox mice. These results elegantly confirm an autocrine/paracrine feedback of PRL on lactotroph cells in vivo, which can be fully compensated by an intact hypothalamic feedback system.-Bernard, V., Lamothe, S., Beau, I., Guillou, A., Martin, A., Le Tissier, P., Grattan, D., Young, J., Binart, N. Autocrine actions of prolactin contribute to the regulation of lactotroph function in vivo.


Assuntos
Comunicação Autócrina/fisiologia , Lactotrofos/metabolismo , Prolactina/metabolismo , Receptores da Prolactina/metabolismo , Animais , Hipotálamo/metabolismo , Integrases/metabolismo , Lactação/metabolismo , Camundongos Transgênicos , Hipófise/metabolismo , Adeno-Hipófise/metabolismo , Receptores da Prolactina/genética , Transdução de Sinais/fisiologia
4.
Endocrinology ; 158(6): 1849-1858, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28323954

RESUMO

Heterogeneity in homotypic cellular responses is an important feature of many biological systems, and it has been shown to be prominent in most anterior pituitary hormonal cell types. In this study, we analyze heterogeneity in the responses to hypothalamic secretagogues in the corticotroph cell population of adult male rats. Using the genetically encoded calcium indicator GCaMP6s, we determined the intracellular calcium responses of these cells to corticotropin-releasing hormone and arginine-vasopressin. Our experiments revealed marked population heterogeneity in the response to these peptides, in terms of amplitude and dynamics of the responses, as well as the sensitivity to different concentrations and duration of stimuli. However, repeated stimuli to the same cell produced remarkably consistent responses, indicating that these are deterministic on a cell-by-cell level. We also describe similar heterogeneity in the sensitivity of cells to inhibition by corticosterone. In summary, our results highlight a large degree of heterogeneity in the cellular mechanisms that govern corticotroph responses to their physiological stimuli; this could provide a mechanism to extend the dynamic range of the responses at the population level to allow adaptation to different physiological challenges.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Corticosterona/farmacologia , Corticotrofos/efeitos dos fármacos , Corticotrofos/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Hormônios Adeno-Hipofisários/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Animais , Arginina Vasopressina/metabolismo , Arginina Vasopressina/farmacologia , Sinalização do Cálcio/genética , Células Cultivadas , Hormônio Liberador da Corticotropina/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos
5.
Int J Cancer ; 140(9): 2150-2161, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28152577

RESUMO

Angiogenesis contributes in multiple ways to disease progression in tumors and reduces treatment efficiency. Molecular therapies targeting Vegf signaling combined with chemotherapy or other drugs exhibit promising results to improve efficacy of treatment. Dopamine has been recently proposed to be a novel safe anti-angiogenic drug that stabilizes abnormal blood vessels and increases therapeutic efficacy. Here, we aimed to identify a treatment to normalize tumoral vessels and restore normal blood perfusion in tumor tissue with a Vegf receptor inhibitor and/or a ligand of dopamine G protein-coupled receptor D2 (D2R). Dopamine, via its action on D2R, is an endogenous effector of the pituitary gland, and we took advantage of this system to address this question. We have used a previously described Hmga2/T mouse model developing haemorrhagic prolactin-secreting adenomas. In mutant mice, blood vessels are profoundly altered in tumors, and an aberrant arterial vascularization develops leading to the loss of dopamine supply. D2R agonist treatment blocks tumor growth, induces regression of the aberrant blood supply and normalizes blood vessels. A chronic treatment is able to restore the altered balance between pro- and anti-angiogenic factors. Remarkably, an acute treatment induces an upregulation of the stabilizing factor Angiopoietin 1. An anti-Vegf therapy is also effective to restrain tumor growth and improves vascular remodeling. Importantly, only the combination treatment suppresses intratumoral hemorrhage and restores blood vessel perfusion, suggesting that it might represent an attractive therapy targeting tumor vasculature. Similar strategies targeting other ligands of GPCRs involved in angiogenesis may identify novel therapeutic opportunities for cancer.


Assuntos
Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Receptores de Dopamina D2/agonistas , Fator A de Crescimento do Endotélio Vascular/genética , Inibidores da Angiogênese/administração & dosagem , Angiopoietina-1/genética , Angiopoietina-1/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Bevacizumab/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias/genética , Neoplasias/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Receptores de Dopamina D2/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
6.
Nat Rev Endocrinol ; 13(5): 257-267, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27934864

RESUMO

The discoveries of novel functional adaptations of the hypothalamus and anterior pituitary gland for physiological regulation have transformed our understanding of their interaction. The activity of a small proportion of hypothalamic neurons can control complex hormonal signalling, which is disconnected from a simple stimulus and the subsequent hormone secretion relationship and is dependent on physiological status. The interrelationship of the terminals of hypothalamic neurons and pituitary cells with the vasculature has an important role in determining the pattern of neurohormone exposure. Cells in the pituitary gland form networks with distinct organizational motifs that are related to the duration and pattern of output, and modifications of these networks occur in different physiological states, can persist after cessation of demand and result in enhanced function. Consequently, the hypothalamus and pituitary can no longer be considered as having a simple stratified relationship: with the vasculature they form a tripartite system, which must function in concert for appropriate hypothalamic regulation of physiological processes, such as reproduction. An improved understanding of the mechanisms underlying these regulatory features has implications for current and future therapies that correct defects in hypothalamic-pituitary axes. In addition, recapitulating proper network organization will be an important challenge for regenerative stem cell treatment.


Assuntos
Sistema Hipotálamo-Hipofisário/fisiologia , Hipotálamo/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Humanos , Hipófise/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia
7.
Endocrinology ; 156(5): 1924-30, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25643154

RESUMO

The pattern of prolactin (PRL) secretion depends on the physiological state. Due to insufficient detection sensitivity of existing assays, the precise description of these patterns in mice is lacking. We described an ultrasensitive ELISA assay that can detect mouse PRL in small fractions of whole blood, allowing longitudinal studies of PRL secretion profiles in freely moving mice. Over a 24-hour period, males displayed no oscillation in PRL levels, whereas virgin and lactating females showed large pulses. Peaks of PRL secretion reached 30-40 ng/mL in lactating female mice and rarely exceeded 10 ng/mL in virgin females. These pulses of PRL in lactating females were associated with suckling. The return of pups after an experimental 12-hour weaning induced a pulse of PRL release, reaching 100 ng/mL. This approach also enabled us to assess the inhibitory tone from hypothalamic dopamine neurons on PRL secretion. We used a dopamine D2 receptor antagonist to relieve pituitary lactotrophs from the tuberoinfundibular dopaminergic inhibitory tone and demonstrate a D2-induced PRL rise that can be used to evaluate both the secretory capacity of lactotrophs and the magnitude of the inhibitory tone on pituitary PRL release. We demonstrate that, although lactotroph function is altered to enhance chronic PRL output, their secretory response to acute stimulus is not modified during lactation and that chronic hyperprolactinemia is linked to a lower inhibitory tone. The combination of a sensitive PRL ELISA and administration of D2 receptor antagonist provide a unique opportunity to investigate the function and plasticity of the lactotroph axis in freely moving mice.


Assuntos
Ritmo Circadiano , Dopamina/metabolismo , Lactação , Lactotrofos/metabolismo , Prolactina/metabolismo , Animais , Antagonistas dos Receptores de Dopamina D2/farmacologia , Neurônios Dopaminérgicos/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Hipotálamo/citologia , Lactotrofos/efeitos dos fármacos , Estudos Longitudinais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Endocrinology ; 152(12): 4789-99, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21952249

RESUMO

The secretion of endocrine hormones from pituitary cells finely regulates a multitude of homeostatic processes. To dynamically adapt to changing physiological status and environmental stimuli, the pituitary gland must undergo marked structural and functional plasticity. Endocrine cell plasticity is thought to primarily rely on variations in cell proliferation and size. However, cell motility, a process commonly observed in a variety of tissues during development, may represent an additional mechanism to promote plasticity within the adult pituitary gland. To investigate this, we used multiphoton time-lapse imaging methods, GH-enhanced green fluorescent protein transgenic mice and sexual dimorphism of the GH axis as a model of divergent tissue demand. Using these methods to acutely (12 h) track cell dynamics, we report that ovariectomy induces a dramatic and dynamic increase in cell motility, which is associated with gross GH-cell network remodeling. These changes can be prevented by estradiol supplementation and are associated with enhanced network connectivity as evidenced by increased coordinated GH-cell activity during multicellular calcium recordings. Furthermore, cell motility appears to be sex-specific, because reciprocal alterations are not detected in males after castration. Therefore, GH-cell motility appears to play an important role in the structural and functional pituitary plasticity, which is evoked in response to changing estradiol concentrations in the female.


Assuntos
Movimento Celular , Estrogênios/farmacologia , Hormônio do Crescimento/análise , Hipófise/citologia , Imagem com Lapso de Tempo , Animais , Feminino , Proteínas de Fluorescência Verde , Masculino , Camundongos , Camundongos Transgênicos , Fatores Sexuais
9.
Mol Endocrinol ; 19(5): 1251-62, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15661833

RESUMO

Animal and clinical models of GHRH excess suggest that GHRH provides an important trophic drive to pituitary somatotrophs. We have adopted a novel approach to silence or ablate GHRH neurons, using a modified H37A variant of the influenza virus M2 protein ((H37A)M2). In mammalian cells, (H37A)M2 forms a high conductance monovalent cation channel that can be blocked by the antiviral drug rimantadine. Transgenic mice with (H37A)M2 expression targeted to GHRH neurons developed postweaning dwarfism with hypothalamic GHRH transcripts detectable by RT-PCR but not by in situ hybridization and immunocytochemistry, suggesting that expression of (H37A)M2 had silenced or ablated virtually all the GHRH cells. GHRH-M2 mice showed marked anterior pituitary hypoplasia with GH deficiency, although GH cells were still present. GHRH-M2 mice were also deficient in prolactin but not TSH. Acute iv injections of GHRH in GHRH-M2 mice elicited a significant GH response, whereas injections of GHRP-6 did not. Twice daily injections of GHRH (100 microg/d) for 7 d in GHRH-M2 mice doubled their pituitary GH but not PRL contents. Rimantadine treatment failed to restore growth or pituitary GH contents. Our results show the importance of GHRH neurons for GH and prolactin production and normal growth.


Assuntos
Hormônio Liberador de Hormônio do Crescimento/deficiência , Hipotálamo/metabolismo , Neurônios/metabolismo , Proteínas da Matriz Viral/genética , Animais , Antivirais/farmacologia , Citomegalovirus/genética , Citomegalovirus/metabolismo , Feminino , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Técnicas de Patch-Clamp , Doenças da Hipófise/metabolismo , Adeno-Hipófise/metabolismo , Rimantadina/farmacologia , Fatores de Tempo , Proteínas da Matriz Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA