Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(32): e2203604119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35917352

RESUMO

Anthropogenic organophosphorus compounds (AOPCs), such as phosphotriesters, are used extensively as plasticizers, flame retardants, nerve agents, and pesticides. To date, only a handful of soil bacteria bearing a phosphotriesterase (PTE), the key enzyme in the AOPC degradation pathway, have been identified. Therefore, the extent to which bacteria are capable of utilizing AOPCs as a phosphorus source, and how widespread this adaptation may be, remains unclear. Marine environments with phosphorus limitation and increasing levels of pollution by AOPCs may drive the emergence of PTE activity. Here, we report the utilization of diverse AOPCs by four model marine bacteria and 17 bacterial isolates from the Mediterranean Sea and the Red Sea. To unravel the details of AOPC utilization, two PTEs from marine bacteria were isolated and characterized, with one of the enzymes belonging to a protein family that, to our knowledge, has never before been associated with PTE activity. When expressed in Escherichia coli with a phosphodiesterase, a PTE isolated from a marine bacterium enabled growth on a pesticide analog as the sole phosphorus source. Utilization of AOPCs may provide bacteria a source of phosphorus in depleted environments and offers a prospect for the bioremediation of a pervasive class of anthropogenic pollutants.


Assuntos
Organismos Aquáticos , Bactérias , Poluentes Ambientais , Compostos Organofosforados , Hidrolases de Triester Fosfórico , Organismos Aquáticos/enzimologia , Bactérias/enzimologia , Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oceano Índico , Mar Mediterrâneo , Compostos Organofosforados/metabolismo , Hidrolases de Triester Fosfórico/genética , Hidrolases de Triester Fosfórico/metabolismo , Fósforo/metabolismo , Água do Mar/microbiologia
2.
ACS Chem Biol ; 8(11): 2394-403, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24041203

RESUMO

VX and its Russian (RVX) and Chinese (CVX) analogues rapidly inactivate acetylcholinesterase and are the most toxic stockpile nerve agents. These organophosphates have a thiol leaving group with a choline-like moiety and are hydrolyzed very slowly by natural enzymes. We used an integrated computational and experimental approach to increase Brevundimonas diminuta phosphotriesterase's (PTE) detoxification rate of V-agents by 5000-fold. Computational models were built of the complex between PTE and V-agents. On the basis of these models, the active site was redesigned to be complementary in shape to VX and RVX and to include favorable electrostatic interactions with their choline-like leaving group. Small libraries based on designed sequences were constructed. The libraries were screened by a direct assay for V-agent detoxification, as our initial studies showed that colorimetric surrogates fail to report the detoxification rates of the actual agents. The experimental results were fed back to improve the computational models. Overall, five rounds of iterating between experiment and model refinement led to variants that hydrolyze the toxic SP isomers of all three V-agents with kcat/KM values of up to 5 × 10(6) M(-1) min(-1) and also efficiently detoxify G-agents. These new catalysts provide the basis for broad spectrum nerve agent detoxification.


Assuntos
Substâncias para a Guerra Química , Inibidores da Colinesterase/química , Simulação por Computador , Compostos Organotiofosforados/antagonistas & inibidores , Biblioteca de Peptídeos , Engenharia de Proteínas , Sítios de Ligação , Substâncias para a Guerra Química/química , Inibidores da Colinesterase/farmacologia , Avaliação Pré-Clínica de Medicamentos , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA