Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuropsychopharmacology ; 46(3): 579-602, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32781459

RESUMO

Maternal immune activation (MIA) and poor maternal nutritional habits are risk factors for the occurrence of neurodevelopmental disorders (NDD). Human studies show the deleterious impact of prenatal inflammation and low n-3 polyunsaturated fatty acid (PUFA) intake on neurodevelopment with long-lasting consequences on behavior. However, the mechanisms linking maternal nutritional status to MIA are still unclear, despite their relevance to the etiology of NDD. We demonstrate here that low maternal n-3 PUFA intake worsens MIA-induced early gut dysfunction, including modification of gut microbiota composition and higher local inflammatory reactivity. These deficits correlate with alterations of microglia-neuron crosstalk pathways and have long-lasting effects, both at transcriptional and behavioral levels. This work highlights the perinatal period as a critical time window, especially regarding the role of the gut-brain axis in neurodevelopment, elucidating the link between MIA, poor nutritional habits, and NDD.


Assuntos
Ácidos Graxos Ômega-3 , Efeitos Tardios da Exposição Pré-Natal , Animais , Comportamento Animal , Encéfalo , Feminino , Humanos , Inflamação , Microglia , Gravidez
2.
J Appl Microbiol ; 130(5): 1412-1424, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32955761

RESUMO

Lactic acid bacteria (LAB), widely used as starter cultures for the fermentation of a large variety of food, can improve the safety, shelf life, nutritional value and overall quality of the fermented products. In this regard, the selection of strains delivering health-promoting compounds is now the main objective of many researchers. Although most LAB are auxotrophic for several vitamins, it is known that certain strains have the capability to synthesize B-group vitamins. This is an important property since humans cannot synthesize most vitamins, and these could be obtained by consuming LAB fermented foods. This review discusses the use of LAB as an alternative to fortification by the chemical synthesis to increase riboflavin and folate concentrations in food. Moreover, it provides an overview of the recent applications of vitamin-producing LAB with anti-inflammatory/antioxidant activities against gastrointestinal tract inflammation. This review shows the potential uses of riboflavin and folates producing LAB for the biofortification of food, as therapeutics against intestinal pathologies and to complement anti-inflammatory/anti-neoplastic treatments.


Assuntos
Ácido Fólico/biossíntese , Alimentos Fortificados , Doenças Inflamatórias Intestinais/terapia , Lactobacillales/metabolismo , Mucosite/terapia , Riboflavina/biossíntese , Animais , Antioxidantes/análise , Fermentação , Alimentos Fermentados , Ácido Fólico/análise , Humanos , Lactobacillales/isolamento & purificação , Riboflavina/análise , Vitaminas/análise , Vitaminas/biossíntese
3.
J Appl Microbiol ; 130(6): 2063-2074, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33128836

RESUMO

AIMS: To evaluate a mixture of selected lactic acid bacteria (LAB) (a riboflavin-producer, a folate-producer and an immunomodulatory strain) as co-adjuvant for 5-fluorouracil (5-FU) chemotherapy in cell culture and using a 4T1 cell animal model of breast cancer. METHODS AND RESULTS: The viability of Caco-2 cells exposed to 5-FU and/or LAB was analysed. Mice bearing breast tumour were treated with 5-FU and/or LAB. Tumour growth was measured. Intestinal mucositis (IM) was evaluated in small intestine; haematological parameters and plasma cytokines were determined. The bacterial mixture did not negatively affect the cytotoxic activity of 5-FU on Caco-2 cells. The LAB mixture attenuated the IM and prevented blood cell decreases associated with 5-FU treatment. Mice that received 5-FU and LAB mixture decreased tumour growth and showed modulation of systemic cytokines modified by both tumour growth and 5-FU treatment. The LAB mixture by itself delayed tumour growth. CONCLUSIONS: The mixture of selected LAB was able to reduce the side-effects associated with chemotherapy without affecting its primary anti-tumour activity. SIGNIFICANCE AND IMPACT OF THE STUDY: This bacterial mixture could prevent the interruption of conventional oncologic therapies by reducing undesirable side-effects. In addition, this blend would provide essential nutrients (vitamins) to oncology patients.


Assuntos
Adjuvantes Imunológicos , Neoplasias da Mama/terapia , Fluoruracila/uso terapêutico , Lactobacillales/imunologia , Lactobacillales/metabolismo , Animais , Antineoplásicos/uso terapêutico , Células CACO-2 , Linhagem Celular , Sobrevivência Celular , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Ácido Fólico/metabolismo , Humanos , Imunomodulação , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos BALB C , Mucosite/microbiologia , Mucosite/patologia , Riboflavina/metabolismo , Vitaminas
4.
Food Res Int ; 109: 168-174, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29803439

RESUMO

It is known that certain lactic acid bacterial (LAB) strains can produce folates, a B-group vitamin that cannot be synthesized by humans and must be exogenously obtained. The aim of this study was to select folate-producing LAB and evaluate their probiotic characteristics in order to obtain a tuber-based food with elevated folate content. Several LAB strains were isolated from a traditional Andean fermented potato product tocosh and cultured in folate-free culture medium. Five folate-producing strains (29-138 ng/mL) were selected to ferment three Andean tubers (potato S. tuberosum spp. andigena, oca Oxalis tuberosa and papalisa Ullucus tuberosus). Sterile purees were inoculated and samples were collected at 0, 6 and 24 h of fermentation and after 28 days of cold storage. Cell growth, pH and total folate were determined. All selected strains were able to grow and produce folates in the substrates and two Lactobacillus sakei strains, CRL 2209 and CRL 2210, produced the highest folate concentrations (730-1484 ng/g after 24 h fermentation). These strains were selected to ferment potato substrates supplemented with amaranth (Amaranthus caudathus) and chia (Salvia hispanica) flour to increase the nutritional value. This addition increased folate synthesis in 89-95%. Furthermore, the ability to survive under simulated gastrointestinal conditions was evaluated and cell counts of the 5 strains remained above the recommended for a probiotic candidate (8.0 log CFU/mL). In conclusion, the selected LAB could be considered potentially probiotic strains and could be used to produce novel tuber based products with elevated folate concentrations. These products could also be used as novel food matrixes for the delivery of probiotic microorganisms.


Assuntos
Ácido Fólico/análise , Lactobacillales/metabolismo , Probióticos/metabolismo , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiologia , Fermentação , Ácido Fólico/metabolismo , Tecnologia de Alimentos , Modelos Biológicos , Tubérculos
5.
Br J Nutr ; 116(7): 1229-1235, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27641762

RESUMO

It has been previously shown that Lactobacillus plantarum CRL 2130 is able to produce riboflavin in soyamilk. The aim of the present study was to evaluate the efficiency of this riboflavin-bio-enriched soyamilk to revert and/or prevent the nutritional deficiency of riboflavin using different animal models. When used to supplement the diets of previously depleted animals, it was shown that the growth, riboflavin status and morphology of the small intestines reverted to normal parameters and were similar to animals supplemented with commercial riboflavin. In the prevention model, the same tendency was observed, where animals that received soyamilk fermented with L. plantarum CRL 2130 did not show signs of riboflavin deficiency. This new bio-fortified soya-based product could be used as part of normal diets to provide a more natural alternative to mandatory fortification with riboflavin for the prevention of its deficiency.


Assuntos
Fermentação , Lactobacillus plantarum/metabolismo , Deficiência de Riboflavina/prevenção & controle , Riboflavina/biossíntese , Leite de Soja/química , Animais , Dieta , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Riboflavina/administração & dosagem , Deficiência de Riboflavina/etiologia , Leite de Soja/metabolismo
6.
J Appl Microbiol ; 111(6): 1297-309, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21933312

RESUMO

Although most vitamins are present in a variety of foods, human vitamin deficiencies still occur in many countries, mainly because of malnutrition not only as a result of insufficient food intake but also because of unbalanced diets. Even though most lactic acid bacteria (LAB) are auxotrophic for several vitamins, it is now known that certain strains have the capability to synthesize water-soluble vitamins such as those included in the B-group (folates, riboflavin and vitamin B(12) amongst others). This review article will show the current knowledge of vitamin biosynthesis by LAB and show how the proper selection of starter cultures and probiotic strains could be useful in preventing clinical and subclinical vitamin deficiencies. Here, several examples will be presented where vitamin-producing LAB led to the elaboration of novel fermented foods with increased and bioavailable vitamins. In addition, the use of genetic engineering strategies to increase vitamin production or to create novel vitamin-producing strains will also be discussed. This review will show that the use of vitamin-producing LAB could be a cost-effective alternative to current vitamin fortification programmes and be useful in the elaboration of novel vitamin-enriched products.


Assuntos
Lactobacillaceae/metabolismo , Complexo Vitamínico B/biossíntese , Deficiência de Vitaminas/prevenção & controle , Suplementos Nutricionais , Ácido Fólico/biossíntese , Alimentos Fortificados , Humanos , Probióticos , Riboflavina/biossíntese , Vitamina B 12/biossíntese
7.
J Dairy Sci ; 88(10): 3435-42, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16162516

RESUMO

Riboflavin deficiency is common in many parts of the world, particularly in developing countries. The use of riboflavin-producing strains in the production of dairy products such as fermented milks, yogurts, and cheeses is feasible and economically attractive because it would decrease the costs involved during conventional vitamin fortification and satisfy consumer demands for healthier foods. The present study was conducted to assess in a rat bioassay the response of administration of milk fermented by modified Lactococcus lactis on the riboflavin status of deficient rats. Rats were fed a riboflavin-deficient diet during 21 d after which this same diet was supplemented with milk fermented by Lactoccus lactis pNZGBAH, a strain that overproduces riboflavin during fermentation. The novel fermented product, with increased levels of riboflavin, was able to eliminate most physiological manifestations of ariboflavinosis, such as stunted growth, elevated erythrocyte glutathione reductase activation coefficient values and hepatomegaly, that were observed using a riboflavin depletion-repletion model, whereas a product fermented with a nonriboflavin-producing strain did not show similar results. A safety assessment of this modified strain was performed by feeding rodents with the modified strain daily for 4 wk. This strain caused no detectable secondary effects. These results pave the way for analyzing the effect of similar riboflavin-overproducing lactic acid bacteria in human trials. The regular consumption of products with increased levels of riboflavin could help prevent deficiencies of this essential vitamin.


Assuntos
Produtos Fermentados do Leite/microbiologia , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Deficiência de Riboflavina/terapia , Riboflavina/biossíntese , Animais , Produtos Fermentados do Leite/química , Fermentação , Fígado/patologia , Estado Nutricional , Tamanho do Órgão , Organismos Geneticamente Modificados , Ratos , Ratos Wistar , Riboflavina/análise , Riboflavina/sangue , Riboflavina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA