Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 176: 165-176, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33561463

RESUMO

Pectin, the major non-cellulosic component of primary cell wall can be degraded by polygalacturonases (PGs) and pectin methylesterases (PMEs) during pathogen attack on plants. We characterized two novel enzymes, VdPG2 and VdPME1, from the fungal plant pathogen Verticillium dahliae. VdPME1 was most active on citrus methylesterified pectin (55-70%) at pH 6 and a temperature of 40 °C, while VdPG2 was most active on polygalacturonic acid at pH 5 and a temperature of 50 °C. Using LC-MS/MS oligoprofiling, and various pectins, the mode of action of VdPME1 and VdPG2 were determined. VdPME1 was shown to be processive, in accordance with the electrostatic potential of the enzyme. VdPG2 was identified as endo-PG releasing both methylesterified and non-methylesterified oligogalacturonides (OGs). Additionally, when flax roots were used as substrate, acetylated OGs were detected. The comparisons of OGs released from Verticillium-susceptible and partially resistant flax cultivars identified new possible elicitor of plant defence responses.


Assuntos
Ascomicetos/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Proteínas Fúngicas/metabolismo , Poligalacturonase/metabolismo , Ascomicetos/genética , Ascomicetos/patogenicidade , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Linho/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Cinética , Modelos Moleculares , Pectinas/metabolismo , Filogenia , Doenças das Plantas/microbiologia , Raízes de Plantas/metabolismo , Poligalacturonase/química , Poligalacturonase/genética , Eletricidade Estática , Especificidade por Substrato
2.
Metabolomics ; 15(3): 28, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30830443

RESUMO

INTRODUCTION: Proton nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomic profiling has a range of applications in plant sciences. OBJECTIVES: The aim of the present work is to provide advice for minimizing uncontrolled variability in plant sample preparation before and during NMR metabolomic profiling, taking into account sample composition, including its specificity in terms of pH and paramagnetic ion concentrations, and NMR spectrometer performances. METHODS: An automation of spectrometer preparation routine standardization before NMR acquisition campaign was implemented and tested on three plant sample sets (extracts of durum wheat spikelet, Arabidopsis leaf and root, and flax leaf, root and stem). We performed 1H-NMR spectroscopy in three different sites on the wheat sample set utilizing instruments from two manufacturers with different probes and magnetic field strengths. The three collections of spectra were processed separately with the NMRProcFlow web tool using intelligent bucketing, and the resulting buckets were subjected to multivariate analysis. RESULTS: Comparability of large- (Arabidopsis) and medium-size (flax) datasets measured at 600 MHz and from the wheat sample set recorded at the three sites (400, 500 and 600 MHz) was exceptionally good in terms of spectral quality. The coefficient of variation of the full width at half maximum (FWHM) and the signal-to-noise ratio (S/N) of two selected peaks was comprised between 5 and 10% depending on the size of sample set and the spectrometer field. EDTA addition improved citrate and malate resonance patterns for wheat sample sets. A collection of 22 samples of wheat spikelet extracts was used as a proof of concept and showed that the data collected at the three sites on instruments of different field strengths and manufacturers yielded the same discrimination pattern of the biological groups. CONCLUSION: Standardization or automation of several steps from extract preparation to data reduction improves data quality for small to large collections of plant samples of different origins.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Extratos Vegetais/isolamento & purificação , Manejo de Espécimes/métodos , Arabidopsis , Automação , Linho , Ensaios de Triagem em Larga Escala/normas , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Folhas de Planta/química , Folhas de Planta/metabolismo , Espectroscopia de Prótons por Ressonância Magnética/métodos , Padrões de Referência , Manejo de Espécimes/normas , Triticum
3.
Nutrients ; 11(2)2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30678243

RESUMO

The flavone apigenin and the mycotoxin zearalenone are two major compounds found in the human diet which bind estrogen receptors (ERs), and therefore influence ER activity. However, the underlying mechanisms are not well known. To unravel the molecular mechanisms that could explain the differential effect of zearalenone and apigenin on ER-positive breast cancer cell proliferation, gene-reporter assays, chromatin immunoprecipitation (ChIP) experiments, proliferation assays and transcriptomic analysis were performed. We found that zearalenone and apigenin transactivated ERs and promoted the expression of estradiol (E2)-responsive genes. However, zearalenone clearly enhanced cellular proliferation, while apigenin appeared to be antiestrogenic in the presence of E2 in both ER-positive breast cancer cell lines, MCF-7 and T47D. The transcriptomic analysis showed that both compounds regulate gene expression in the same way, but with differences in intensity. Two major sets of genes were identified; one set was linked to the cell cycle and the other set was linked to stress response and growth arrest. Our results show that the transcription dynamics in gene regulation induced by apigenin were somehow different with zearalenone and E2 and may explain the differential effect of these compounds on the phenotype of the breast cancer cell. Together, our results confirmed the potential health benefit effect of apigenin, while zearalenone appeared to be a true endocrine-disrupting compound.


Assuntos
Apigenina/toxicidade , Neoplasias da Mama/metabolismo , Receptores de Estrogênio/metabolismo , Zearalenona/toxicidade , Linhagem Celular Tumoral , Estrogênios não Esteroides/toxicidade , Feminino , Humanos , Fitoestrógenos , Receptores de Estrogênio/genética
4.
Cell Commun Signal ; 15(1): 26, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28666461

RESUMO

BACKGROUND: Estrogen receptors (ER) α and ß are found in both women and men in many tissues, where they have different functions, including having roles in cell proliferation and differentiation of the reproductive tract. In addition to estradiol (E2), a natural hormone, numerous compounds are able to bind ERs and modulate their activities. Among these compounds, phytoestrogens such as isoflavones, which are found in plants, are promising therapeutics for several pathologies. Glyceollins are second metabolites of isoflavones that are mainly produced in soybean in response to an elicitor. They have potentially therapeutic actions in breast cancer by reducing the proliferation of cancer cells. However, the molecular mechanisms driving these effects remain elusive. METHODS: First, to determine the proliferative or anti-proliferative effects of glyceollins, in vivo and in vitro approaches were used. The length of epithelial duct in mammary gland as well as uterotrophy after treatment by E2 and glyceollins and their effect on proliferation of different breast cell line were assessed. Secondly, the ability of glyceollin to activate ER was assessed by luciferase assay. Finally, to unravel molecular mechanisms involved by glyceollins, transcriptomic analysis was performed on MCF-7 breast cancer cells. RESULTS: In this study, we show that synthetic versions of glyceollin I and II exert anti-proliferative effects in vivo in mouse mammary glands and in vitro in different ER-positive and ER-negative breast cell lines. Using transcriptomic analysis, we produce for the first time an integrated view of gene regulation in response to glyceollins and reveal that these phytochemicals act through at least two major pathways. One pathway involving FOXM1 and ERα is directly linked to proliferation. The other involves the HIF family and reveals that stress is a potential factor in the anti-proliferative effects of glyceollins due to its role in increasing the expression of REDD1, an mTORC1 inhibitor. CONCLUSION: Overall, our study clearly shows that glyceollins exert anti-proliferative effects by reducing the expression of genes encoding cell cycle and mitosis-associated factors and biomarkers overexpressed in cancers and by increasing the expression of growth arrest-related genes. These results reinforce the therapeutic potential of glyceollins for breast cancer.


Assuntos
Proliferação de Células/efeitos dos fármacos , Glândulas Mamárias Animais/efeitos dos fármacos , Fitoestrógenos/farmacologia , Pterocarpanos/farmacologia , Animais , Estradiol/metabolismo , Feminino , Humanos , Células MCF-7 , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Camundongos , Receptores de Estrogênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Toxicol Appl Pharmacol ; 325: 61-70, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28396216

RESUMO

Estrogen receptors (ERs) α and ß are distributed in most tissues of women and men. ERs are bound by estradiol (E2), a natural hormone, and mediate the pleiotropic and tissue-specific effects of E2, such as proliferation of breast epithelial cells or protection and differentiation of neuronal cells. Numerous environmental molecules, called endocrine disrupting compounds, also interact with ERs. Phytoestrogens belong to this large family and are considered potent therapeutic molecules that act through their selective estrogen receptor modulator (SERM) activity. Using breast cancer cell lines as a model of estrogen-dependent proliferation and a stably ER-expressing PC12 cell line as a model of neuronal differentiating cells, we studied the SERM activity of major dietary compounds, such as apigenin, liquiritigenin, daidzein, genistein, coumestrol, resveratrol and zearalenone. The ability of these compounds to induce ER-transactivation and breast cancer cell proliferation and enhance Nerve Growth Factor (NGF) -induced neuritogenesis was assessed. Surprisingly, although all compounds were able to activate the ER through an estrogen responsive element reporter gene, they showed differential activity toward proliferation or differentiation. Apigenin and resveratrol showed a partial or no proliferative effect on breast cancer cells but fully contributed to the neuritogenesis effect of NGF. However, daidzein and zearalenone showed full effects on cellular proliferation but did not induce cellular differentiation. In summary, our results suggest that the therapeutic potential of phytoestrogens can diverge depending on the molecule and the phenotype considered. Hence, apigenin and resveratrol might be used in the development of therapeutics for breast cancer and brain diseases.


Assuntos
Neoplasias das Glândulas Suprarrenais/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Dieta , Neurogênese/efeitos dos fármacos , Feocromocitoma/tratamento farmacológico , Fitoestrógenos/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/metabolismo , Neoplasias das Glândulas Suprarrenais/patologia , Animais , Apigenina/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Relação Dose-Resposta a Droga , Receptor alfa de Estrogênio/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Isoflavonas/farmacologia , Células MCF-7 , Proteínas do Tecido Nervoso/metabolismo , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neuritos/patologia , Células PC12 , Feocromocitoma/genética , Feocromocitoma/metabolismo , Feocromocitoma/patologia , Ratos , Elementos de Resposta , Resveratrol , Estilbenos/farmacologia , Transcrição Gênica/efeitos dos fármacos , Transfecção , Zearalenona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA