Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Nano ; 13(9): 10835-10844, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31487464

RESUMO

Efficient intracellular delivery of biomolecules into cells that grow in suspension is of great interest for biomedical research, such as for applications in cancer immunotherapy. Although tremendous effort has been expended, it remains challenging for existing transfer platforms to deliver materials efficiently into suspension cells. Here, we demonstrate a high-efficiency photothermal delivery approach for suspension cells using sharp nanoscale metal-coated tips positioned at the edge of microwells, which provide controllable membrane disruption for each cell in an array. Self-aligned microfabrication generates a uniform microwell array with three-dimensional nanoscale metallic sharp tip structures. Suspension cells self-position by gravity within each microwell in direct contact with eight sharp tips, where laser-induced cavitation bubbles generate transient pores in the cell membrane to facilitate intracellular delivery of extracellular cargo. A range of cargo sizes were tested on this platform using Ramos suspension B cells with an efficiency of >84% for Calcein green (0.6 kDa) and >45% for FITC-dextran (2000 kDa), with retained viability of >96% and a throughput of >100 000 cells delivered per minute. The bacterial enzyme ß-lactamase (29 kDa) was delivered into Ramos B cells and retained its biological activity, whereas a green fluorescence protein expression plasmid was delivered into Ramos B cells with a transfection efficiency of >58%, and a viability of >89% achieved.


Assuntos
Hipertermia Induzida , Espaço Intracelular/química , Nanopartículas/química , Fototerapia , Linhagem Celular Tumoral , Sobrevivência Celular , Análise de Elementos Finitos , Gravitação , Proteínas de Fluorescência Verde/metabolismo , Humanos , Lasers , Suspensões , beta-Lactamases/metabolismo
2.
PLoS One ; 14(5): e0215607, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31075149

RESUMO

BACKGROUND: Shorter, more effective treatments for tuberculosis (TB) are urgently needed. While many TB drugs are available, identification of the best regimens is challenging because of the large number of possible drug-dose combinations. We have found consistently that responses of cells or whole animals to drug-dose stimulations fit a parabolic response surface (PRS), allowing us to identify and optimize the best drug combinations by testing only a small fraction of the total search space. Previously, we used PRS methodology to identify three regimens (PRS Regimens I-III) that in murine models are much more effective than the standard regimen used to treat TB. However, PRS Regimens I and II are unsuitable for treating drug-resistant TB and PRS Regimen III includes an experimental drug. Here, we use PRS methodology to identify from an expanded pool of drugs new highly effective near-universal drug regimens comprising only approved drugs. METHODS AND FINDINGS: We evaluated combinations of 15 different drugs in a human macrophage TB model and identified the most promising 4-drug combinations. We then tested 14 of these combinations in Mycobacterium tuberculosis-infected BALB/c mice and chose for PRS dose optimization and further study the two most potent regimens, designated PRS Regimens IV and V, consisting of clofazimine (CFZ), bedaquiline (BDQ), pyrazinamide (PZA), and either amoxicillin/clavulanate (AC) or delamanid (DLM), respectively. We then evaluated the efficacy in mice of optimized PRS Regimens IV and V, as well as a 3-drug regimen, PRS Regimen VI (CFZ, BDQ, and PZA), and compared their efficacy to PRS Regimen III (CFZ, BDQ, PZA, and SQ109), previously shown to reduce the time to achieve relapse-free cure in mice by 80% compared with the Standard Regimen (isoniazid, rifampicin, PZA, and ethambutol). Efficacy measurements included early bactericidal activity, time to lung sterilization, and time to relapse-free cure. PRS Regimens III-VI all rapidly sterilized the lungs and achieved relapse-free cure in 3 weeks (PRS Regimens III, V, and VI) or 5 weeks (PRS Regimen IV). In contrast, mice treated with the Standard Regimen still had high numbers of bacteria in their lungs after 6-weeks treatment and none achieved relapse-free cure in this time-period. CONCLUSIONS: We have identified three new regimens that rapidly sterilize the lungs of mice and dramatically shorten the time required to achieve relapse-free cure. All mouse drug doses in these regimens extrapolate to doses that are readily achievable in humans. Because PRS Regimens IV and V contain only one first line drug (PZA) and exclude fluoroquinolones and aminoglycosides, they should be effective against most TB cases that are multidrug resistant (MDR-TB) and many that are extensively drug-resistant (XDR-TB). Hence, these regimens have potential to shorten dramatically the time required for treatment of both drug-sensitive and drug-resistant TB. If clinical trials confirm that these regimens dramatically shorten the time required to achieve relapse-free cure in humans, then this radically shortened treatment has the potential to improve treatment compliance, decrease the emergence of drug resistance, and decrease the healthcare burden of treating both drug-sensitive and drug-resistant TB.


Assuntos
Antituberculosos/uso terapêutico , Tuberculose/tratamento farmacológico , Animais , Antituberculosos/farmacologia , Inteligência Artificial , Modelos Animais de Doenças , Aprovação de Drogas , Combinação de Medicamentos , Cálculos da Dosagem de Medicamento , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/efeitos dos fármacos , Células THP-1 , Resultado do Tratamento
3.
ACS Infect Dis ; 5(2): 281-291, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30480992

RESUMO

Francisella tularensis causes a serious and often fatal infection, tularemia. We compared the efficacy of moxifloxacin formulated as free drug vs disulfide snap-top mesoporous silica nanoparticles (MSNs) in a mouse model of pneumonic tularemia. We found that MSN-formulated moxifloxacin was more effective than free drug and that the intramuscular and subcutaneous routes were markedly more effective than the intravenous route. Measurement of tissue silica levels and fluorescent flow cytometry assessment of colocalization of MSNs with infected cells revealed that the enhanced efficacy of MSNs and the intramuscular route of delivery was not due to better delivery of MSNs to infected tissues or cells. However, moxifloxacin blood levels demonstrated that the nanoparticle formulation and intramuscular route provided the longest half-life and longest time above the minimal inhibitory concentration. Thus, improved pharmacokinetics are responsible for the greater efficacy of nanoparticle formulation and intramuscular delivery compared with free drug and intravenous delivery.


Assuntos
Antibacterianos/farmacocinética , Antibacterianos/uso terapêutico , Moxifloxacina/farmacocinética , Moxifloxacina/uso terapêutico , Nanopartículas/química , Tularemia/tratamento farmacológico , Administração Intravenosa , Animais , Modelos Animais de Doenças , Feminino , Francisella tularensis/efeitos dos fármacos , Injeções Intramusculares , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Pneumonia Bacteriana/tratamento farmacológico , Tularemia/microbiologia
4.
Small ; 12(27): 3690-702, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27246117

RESUMO

Effective and rapid treatment of tularemia is needed to reduce morbidity and mortality of this potentially fatal infectious disease. The etiologic agent, Francisella tularensis, is a facultative intracellular bacterial pathogen which infects and multiplies to high numbers in macrophages. Nanotherapeutics are particularly promising for treatment of infectious diseases caused by intracellular pathogens, whose primary host cells are macrophages, because nanoparticles preferentially target and are avidly internalized by macrophages. A mesoporous silica nanoparticle (MSN) has been developed functionalized with disulfide snap-tops that has high drug loading and selectively releases drug intracellularly in response to the redox potential. These nanoparticles, when loaded with Hoechst fluorescent dye, release their cargo exclusively intracellularly and stain the nuclei of macrophages. The MSNs loaded with moxifloxacin kill F. tularensis in macrophages in a dose-dependent fashion. In a mouse model of lethal pneumonic tularemia, MSNs loaded with moxifloxacin prevent weight loss, illness, and death, markedly reduce the burden of F. tularensis in the lung, liver, and spleen, and are significantly more efficacious than an equivalent amount of free drug. An important proof-of-principle for the potential therapeutic use of a novel nanoparticle drug delivery platform for the treatment of infectious diseases is provided.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Fluoroquinolonas/química , Fluoroquinolonas/uso terapêutico , Nanopartículas/química , Dióxido de Silício/química , Tularemia/tratamento farmacológico , Animais , Feminino , Fluoroquinolonas/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Moxifloxacina
5.
ACS Nano ; 9(11): 10778-89, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26435204

RESUMO

We have optimized mesoporous silica nanoparticles (MSNs) functionalized with pH-sensitive nanovalves for the delivery of the broad spectrum fluoroquinolone moxifloxacin (MXF) and demonstrated its efficacy in treating Francisella tularensis infections both in vitro and in vivo. We compared two different nanovalve systems, positive and negative charge modifications of the mesopores, and different loading conditions-varying pH, cargo concentration, and duration of loading-and identified conditions that maximize both the uptake and release capacity of MXF by MSNs. We have demonstrated in macrophage cell culture that the MSN-MXF delivery platform is highly effective in killing F. tularensis in infected macrophages, and in a mouse model of lethal pneumonic tularemia, we have shown that the drug-loaded MSNs are much more effective in killing F. tularensis than an equivalent amount of free MXF.


Assuntos
Sistemas de Liberação de Medicamentos , Fluoroquinolonas/uso terapêutico , Nanopartículas/química , Pneumonia/complicações , Dióxido de Silício/química , Tularemia/complicações , Tularemia/tratamento farmacológico , Animais , Benzimidazóis/química , Fluoroquinolonas/farmacologia , Francisella tularensis/efeitos dos fármacos , Francisella tularensis/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Moxifloxacina , Ácidos Fosforosos/química , Pneumonia/tratamento farmacológico , Porosidade , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA