RESUMO
IgE is central to the development of allergic diseases, and its neutralization alleviates allergic symptoms. However, most of these antibodies are based on IgG1, which is associated with an increased risk of fragment crystallizable-mediated side effects. Moreover, omalizumab, an anti-IgE antibody approved for therapeutic use, has limited benefits for patients with high IgE levels. Here, we assess a fusion protein with extracellular domain of high affinity IgE receptor, FcεRIα, linked to a IgD/IgG4 hybrid Fc domain we term IgETRAP, to reduce the risk of IgG1 Fc-mediated side effects. IgETRAP shows enhanced IgE binding affinity compared to omalizumab. We also see an enhanced therapeutic effect of IgETRAP in food allergy models when combined with Bifidobacterium longum, which results in mast cell number and free IgE levels. The combination of IgETRAP and B. longum may therefore represent a potent treatment for allergic patients with high IgE levels.
Assuntos
Bifidobacterium longum , Hipersensibilidade Alimentar , Bifidobacterium longum/metabolismo , Suplementos Nutricionais , Hipersensibilidade Alimentar/terapia , Humanos , Imunoglobulina D , Imunoglobulina E , Imunoglobulina G , Omalizumab/uso terapêutico , Receptores de IgE/metabolismoRESUMO
An allergic reaction occurs when the immune system overreacts to harmless substance called allergen that gains access to the body. Food allergy is a hypersensitive immune reaction to food proteins and the number of patients with food allergy has recently increased. Aloe Vera is used for wellness and medicinal purposes. In particular, Aloe vera has been reported to enhance immunity. However, the effect of Aloe vera on food allergy is not yet known. In this study, we investigated the effects of processed Aloe vera gel (PAG) containing low molecular weight Aloe polysaccharide (AP) on ovalbumin (OVA)-induced food allergy in mice. Allergic symptoms, rectal temperature, and diarrhea were measured in OVA-induced food allergy mice. Other allergic parameters were also analyzed by RT-PCR, ELISA, flow cytometry, and other biochemical methods. As the results, PAG suppressed the decrease of body temperature, diarrhea, and allergic symptoms in OVA-induced food allergy mice. PAG also reduced serum concentrations of type 2â¯helper T cell (Th2) cytokines (Interleukin-(IL)-4, IL-5, and IL-13) as well as histamine, mast cell protease-1 (MCP-1), and immunoglobulin (Ig)E. PAG blocked the degranulation of mast cells and infiltration of eosinophils in intestine. Furthermore, PAG suppressed the population of Th2 cells in spleen and mesenteric lymph nodes. PAG also increased the production of IL-10 and population of type 1 regulatory T (Tr1) cells in mice with food allergy. Taken together, our findings suggest that PAG suppressed Th2 immune responses through, at least partially, stimulating the secretion of IL-10 in food allergy mice.
Assuntos
Hipersensibilidade Alimentar/prevenção & controle , Preparações de Plantas/química , Polissacarídeos/farmacologia , Células Th2/imunologia , Animais , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Hipersensibilidade Alimentar/imunologia , Imunoglobulina E/imunologia , Intestinos/imunologia , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Polissacarídeos/isolamento & purificação , Baço/imunologiaRESUMO
Chrysanthemum zawadskii var. latilobum (CZ) has been used for beverage or tea and also as folk medicine for the remedy of diverse inflammatory diseases. Nevertheless, the therapeutic effect of CZ on arthritis remains to be unknown. In this paper we aim to investigate the CZ's antiarthritic effect and mechanism of action both in vitro and in vivo. To assess CZ's antiarthritic effect, mouse models of type II collagen-induced arthritis (CIA) were used. Mice were used to gauge clinical arthritis index and histopathological changes. Reverse transcriptase-polymerase chain reaction (RT-PCR), western blotting, electrophoretic mobility shift assay (EMSA), and other biological methods were adopted to measure CZ's effect on arthritis and to understand the veiled mechanism of action. CZ greatly suppressed CIA, histopathological score, bone erosion, and osteoclast differentiation. Mechanistically, CZ inhibited the production of various inflammatory and arthritic mediators like inflammatory cytokines, matrix metalloproteinases (MMPs), and chemokines. Of note, CZ significantly suppressed the activation of the NF-κB pathway in vivo. CZ exerted an antiarthritic effect in CIA mice by curbing the production of crucial inflammatory and arthritis mediators. This study warrants further investigation of CZ for the use in human rheumatoid arthritis (RA).