Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 79(8): 397, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790616

RESUMO

Change in cell size may bring in profound impact to cell function and survival, hence the integrity of the organs consisting of those cells. Nevertheless, how cell size is regulated remains incompletely understood. We used the fluorescent zebrafish transgenic line Tg-GGH/LR that displays inducible folate deficiency (FD) and hepatomegaly upon FD induction as in vivo model. We found that FD caused hepatocytes enlargement and increased liver stiffness, which could not be prevented by nucleotides supplementations. Both in vitro and in vivo studies indicated that RIPK3/MLKL-dependent necroptotic pathway and Hippo signaling interactively participated in this FD-induced hepatocytic enlargement in a dual chronological and cooperative manner. FD also induced hepatic inflammation, which convenes a dialog of positive feedback loop between necroptotic and Hippo pathways. The increased MMP13 expression in response to FD elevated TNFα level and further aggravated the hepatocyte enlargement. Meanwhile, F-actin was circumferentially re-allocated at the edge under cell membrane in response to FD. Our results substantiate the interplay among intracellular folate status, pathways regulation, inflammatory responses, actin cytoskeleton and cell volume control, which can be best observed with in vivo platform. Our data also support the use of this Tg-GGH/LR transgenic line for the mechanistical and therapeutic research for the pathologic conditions related to cell size alteration.


Assuntos
Necroptose , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Ácido Fólico/metabolismo , Hepatócitos/metabolismo , Hepatomegalia/metabolismo , Hipertrofia/metabolismo , Inflamação/patologia , Peixe-Zebra/genética
2.
Front Cell Dev Biol ; 9: 702969, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34268314

RESUMO

OBJECTIVE: Congenital eye diseases are multi-factorial and usually cannot be cured. Therefore, proper preventive strategy and understanding the pathomechanism underlying these diseases become important. Deficiency in folate, a water-soluble vitamin B, has been associated with microphthalmia, a congenital eye disease characterized by abnormally small and malformed eyes. However, the causal-link and the underlying mechanism between folate and microphthalmia remain incompletely understood. METHODS: We examined the eye size, optomotor response, intracellular folate distribution, and the expression of folate-requiring enzymes in zebrafish larvae displaying folate deficiency (FD) and ocular defects. RESULTS: FD caused microphthalmia and impeded visual ability in zebrafish larvae, which were rescued by folate and dNTP supplementation. Cell cycle analysis revealed cell accumulation at S-phase and sub-G1 phase. Decreased cell proliferation and increased apoptosis were found in FD larvae during embryogenesis in a developmental timing-specific manner. Lowered methylenetetrahydrofolate reductase (mthfr) expression and up-regulated methylenetetrahydrofolate dehydrogenase (NADP+-dependent)-1-like (mthfd1L) expression were found in FD larvae. Knocking-down mthfd1L expression worsened FD-induced ocular anomalies; whereas increasing mthfd1L expression provided a protective effect. 5-CH3-THF is the most sensitive folate pool, whose levels were the most significantly reduced in response to FD; whereas 10-CHO-THF levels were less affected. 5-CHO-THF is the most effective folate adduct for rescuing FD-induced microphthalmia and defective visual ability. CONCLUSION: FD impeded nucleotides formation, impaired cell proliferation and differentiation, caused apoptosis and interfered active vitamin A production, contributing to ocular defects. The developmental timing-specific and incoherent fluctuation among folate adducts and increased expression of mthfd1L in response to FD reflect the context-dependent regulation of folate-mediated one-carbon metabolism, endowing the larvae to prioritize the essential biochemical pathways for supporting the continuous growth in response to folate depletion.

3.
Sci Rep ; 9(1): 12633, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477754

RESUMO

Lung injury is one of the pathological hallmarks of most respiratory tract diseases including asthma, acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD). It involves progressive pulmonary tissue damages which are usually irreversible and incurable. Therefore, strategies to facilitate drug development against lung injury are needed. Here, we characterized the zebrafish folate-deficiency (FD) transgenic line that lacks a fully-developed swim bladder. Whole-mount in-situ hybridization revealed comparable distribution patterns of swim bladder tissue markers between wild-type and FD larvae, suggesting a proper development of swim bladder in early embryonic stages. Unexpectedly, neutrophils infiltration was not observed in the defective swim bladder. Microarray analysis revealed a significant increase and decrease of the transcripts for cathepsin L and a cystatin B (CSTB)-like (zCSTB-like) proteins, respectively, in FD larvae. The distribution of cathepsin L and the zCSTB-like transcripts was spatio-temporally specific in developing wild-type embryos and, in appropriate measure, correlated with their potential roles in maintaining swim bladder integrity. Supplementing with 5-formyltetrahydrofolate successfully prevented the swim bladder anomaly and the imbalanced expression of cathepsin L and the zCSTB-like protein induced by folate deficiency. Injecting the purified recombinant zebrafish zCSTB-like protein alleviated FD-induced swim bladder anomaly. We concluded that the imbalanced expression of cathepsin L and the zCSTB-like protein contributed to the swim bladder malformation induced by FD and suggested the potential application of this transgenic line to model the lung injury and ECM remodeling associated with protease/protease inhibitor imbalance.


Assuntos
Sacos Aéreos/patologia , Catepsina L/metabolismo , Cistatina B/metabolismo , Endopeptidases/metabolismo , Deficiência de Ácido Fólico/complicações , Lesão Pulmonar/etiologia , Inibidores de Proteases/metabolismo , Peixe-Zebra/fisiologia , Sacos Aéreos/metabolismo , Sequência de Aminoácidos , Animais , Biomarcadores/metabolismo , Catepsina L/genética , Cistatina B/química , Cistatina B/genética , Modelos Animais de Doenças , Embrião não Mamífero/patologia , Desenvolvimento Embrionário , Larva/metabolismo , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/metabolismo
4.
PLoS One ; 12(11): e0188585, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29176804

RESUMO

Folate (vitamin B9) is an essential nutrient required for cell survival, proliferation, differentiation and therefore embryogenesis. Folate deficiency has been associated with many diseases, including congenital heart diseases and megaloblastic anemia, yet the mechanisms underlying these remains elusive. Here, we examine the impact of folate deficiency on the development of the circulation system using a zebrafish transgenic line which displays inducible folate deficiency. Impaired hematopoiesis includes decreased hemoglobin levels, decreased erythrocyte number, increased erythrocyte size and aberrant c-myb expression pattern were observed in folate deficient embryos. Cardiac defects, including smaller chamber size, aberrant cardiac function and cmlc2 expression pattern, were also apparent in folate deficient embryos. Characterization of intracellular folate content in folate deficiency revealed a differential fluctuation among the different folate derivatives that carry a single carbon group at different oxidation levels. Rescue attempts by folic acid and nucleotides resulted in differential responses among affected tissues, suggesting that different pathomechanisms are involved in folate deficiency-induced anomalies in a tissue-specific manner. The results of the current study provide an explanation for the inconsistent outcome observed clinically in patients suffering from folate deficiency and/or receiving folate supplementation. This study also supports the use of this model for further research on the defective cardiogenesis and hematopoiesis caused by folate deficiency.


Assuntos
Circulação Sanguínea , Deficiência de Ácido Fólico/fisiopatologia , Larva/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Movimento Celular , Proliferação de Células , Desenvolvimento Embrionário , Coração/embriologia , Hematopoese , Peixe-Zebra/embriologia
5.
Neurobiol Dis ; 71: 234-44, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25131448

RESUMO

Folate is a nutrient essential for the development, function and regeneration of nervous systems. Folate deficiency has been linked to many neurological disorders including neural tube defects in fetus and Alzheimer's diseases in the elderly. However, the etiology underlying these folate deficiency-associated diseases is not completely understood. In this study, zebrafish transgenic lines with timing and duration-controllable folate deficiency were developed by ectopically overexpressing a recombinant EGFP-γ-glutamyl hydrolase (γGH). Impeded neural crest cell migration was observed in the transgenic embryos when folate deficiency was induced in early stages, leading to defective neural tube closure and hematopoiesis. Adding reduced folate or N-acetylcysteine reversed the phenotypic anomalies, supporting the causal link between the increased oxidative stress and the folate deficiency-induced abnormalities. When folate deficiency was induced in aged fish accumulation of beta-amyloid and phosphorylated Tau protein were found in the fish brain cryo-sections. Increased autophagy and accumulation of acidic autolysosome were apparent in folate deficient neuroblastoma cells, which were reversed by reduced folate or N-acetylcysteine supplementation. Decreased expression of cathepsin B, a lysosomal protease, was also observed in cells and tissue with folate deficiency. We concluded that folate deficiency-induced oxidative stress contributed to the folate deficiency-associated neuropathogenesis in both early and late stages of life.


Assuntos
Envelhecimento/genética , Doença de Alzheimer/etiologia , Deficiência de Ácido Fólico , Defeitos do Tubo Neural/etiologia , Estresse Oxidativo/genética , Acetilcisteína/metabolismo , Acetilcisteína/farmacologia , Doença de Alzheimer/genética , Animais , Animais Geneticamente Modificados , Catepsina B/genética , Catepsina B/metabolismo , Movimento Celular/genética , Embrião não Mamífero , Ácido Fólico/metabolismo , Deficiência de Ácido Fólico/complicações , Deficiência de Ácido Fólico/genética , Deficiência de Ácido Fólico/patologia , Proteínas de Fluorescência Verde/genética , Temperatura Alta/efeitos adversos , Proteínas Associadas aos Microtúbulos/metabolismo , Crista Neural/fisiologia , Defeitos do Tubo Neural/genética , Estresse Oxidativo/efeitos dos fármacos , Fatores de Tempo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , gama-Glutamil Hidrolase/metabolismo
6.
Zebrafish ; 10(3): 326-37, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23758124

RESUMO

Folate is a nutrient crucial for rapidly growing tissues, including developing embryos and cancer cells. Folate participates in the biosynthesis of nucleic acids, proteins, amino acids, S-adenosylmethionine, many neurotransmitters, and some vitamins. The intracellular folate pool consists of different folate adducts, which carry one-carbon units at three different oxidative states and participate in distinct biochemical reactions. Therefore, the content and dynamics of folate adducts will affect the homeostasis of the metabolites generated in these folate-mediated reactions. Currently, the knowledge on the level of each individual folate adduct in developing embryos is limited. With an improved high-performance liquid chromatography protocol, we found that tetrahydrofolate (THF), the backbone of one-carbon carrier, gradually increased and became dominant in developing zebrafish embryos. 5-methyl-tetrahydrofolate (5-CH3-THF) was abundant in unfertilized eggs but decreased rapidly when embryos started to proliferate and differentiate. 10-formyltetrahydrofolate at first increased after fertilization, and then dropped dramatically before reaching a sustained level at later stages. Dihydrofolate (DHF) slightly decreased initially and remained low throughout embryogenesis. Exposure to methotrexate significantly decreased 5-CH3-THF levels and increased DHF pools, besides causing brain ventricle anomaly. Rescuing with leucovorin partly reversed the abnormal phenotype. Unexpectedly, the level of 5-CH3-THF remained low even when leucovorin was added for rescue. Our results show that different folate adducts fluctuated significantly and differentially in concert with the physiological requirement specific for the corresponding developmental stages. Furthermore, methotrexate lowered the level of 5-CH3-THF in developing embryos, which could not be reversed with folate supplementation and might be more substantial to cellular methylation potential and epigenetic control than to nucleotide synthesis.


Assuntos
Embrião não Mamífero/metabolismo , Tetra-Hidrofolatos/metabolismo , Animais , Desenvolvimento Embrionário , Leucovorina , Metotrexato , Tetra-Hidrofolatos/análise , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA