RESUMO
Alphaviruses are arthropod-borne, positive-stranded RNA viruses capable of causing severe disease with high morbidity. Chikungunya virus (CHIKV) is an alphavirus that causes a febrile illness which can progress into chronic arthralgia. The current lack of vaccines and specific treatment for CHIKV infection underscores the need to develop new therapeutic interventions. To discover new antiviral agents, we performed a compound screen in cell culture-based infection models and identified two carbocyclic adenosine analogues, 6'-ß-fluoro-homoaristeromycin (FHA) and 6'-fluoro-homoneplanocin A (FHNA), that displayed potent activity against CHIKV and Semliki Forest virus (SFV) with 50% effective concentrations in the nanomolar range at nontoxic concentrations. The compounds, designed as inhibitors of the host enzyme S-adenosylhomocysteine (SAH) hydrolase, impeded postentry steps in CHIKV and SFV replication. Selection of FHNA-resistant mutants and reverse genetics studies demonstrated that the combination of mutations G230R and K299E in CHIKV nonstructural protein 1 (nsP1) conferred resistance to the compounds. Enzymatic assays with purified wild-type (wt) SFV nsP1 suggested that an oxidized (3'-keto) form, rather than FHNA itself, directly inhibited the MTase activity, while a mutant protein with the K231R and K299E substitutions was insensitive to the compound. Both wt nsP1 and the resistant mutant were equally sensitive to the inhibitory effect of SAH. Our combined data suggest that FHA and FHNA inhibit CHIKV and SFV replication by directly targeting the MTase activity of nsP1, rather than through an indirect effect on host SAH hydrolase. The high potency and selectivity of these novel alphavirus mRNA capping inhibitors warrant further preclinical investigation of these compounds.
Assuntos
Adenosina/análogos & derivados , Antivirais/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Vírus Chikungunya/fisiologia , Adenosina/farmacologia , Animais , Vírus Chikungunya/patogenicidade , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Guanosina Monofosfato/metabolismo , Mutação , Radioisótopos de Fósforo , Vírus da Floresta de Semliki/efeitos dos fármacos , Células Vero , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacosRESUMO
Based on the potent anticancer activity of the D-arabino-configured cytosine nucleoside ara-C, novel 2'-substituted-4'-selenoarabinofuranosyl pyrimidines 3a-3u, comprising azido, fluoro, and hydroxyl substituents at C-2' were designed, synthesized, and evaluated for anticancer activity. The 2'-azido group was stereoselectively introduced by the Mitsunobu reaction using diphenylphosphoryl azide (DPPA), and the 2'-fluoro group was stereoselectively introduced through the double inversions of stereochemistry via the episelenium intermediate, which was formed by the participation of the selenium atom. Among the compounds tested, the 2'-fluoro derivative 3t (X = NH2, Y = H, R = F) was found to be the most potent anticancer agent and showed more potent anticancer activity than the control, ara-C in all tested human cancer cell lines (HCT116, A549, SNU638, T47D, and PC-3) except the leukemia cell lines (K562). The anticancer activity of the 2'-substituted-4'-selenonucleosides is in the following order: 2'-F > 2'-OH > 2'-N3.
Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Selênio/química , Linhagem Celular Tumoral , Humanos , Modelos Moleculares , Conformação Molecular , Relação Estrutura-AtividadeRESUMO
We have established structure-activity relationships of novel 4'-thionucleoside analogues as the A(3) adenosine receptor (AR) agonists. Binding affinity, selectivity toward other AR subtypes, and efficacy in inhibition of adenylate cyclase were studied. From this study, 2-chloro-N(6)-methyl-4'-thioadenosine-5'-methyluronamide (36a) emerged as the most potent and selective agonist at the human A(3) AR. We have also revealed that, similar to 4'-oxoadenosine analogues, at least one hydrogen on the 5'-uronamide moiety was necessary for high-affinity binding at the human A(3) AR, presumably to allow this group to donate a H bond within the binding site. Furthermore, bulky substituents on the 5'-uronamide reduced binding affinity, but in some cases large 5'-uronamide substituents, such as substituted benzyl and 2-phenylethyl groups, maintained moderate affinity with reduced efficacy, leading to A(3) AR partial agonists or antagonists. In several cases for which the corresponding 4'-oxonucleosides have been studied, the 4'-thionucleosides showed higher binding affinity to the A(3) AR.