Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Biol ; 37(1): 129-34, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26930870

RESUMO

Traditional medicinal plants contain a wide variety of chemicals that have potent antibacterial activity. To find an alternative agent of overcoming the problems of methicillin-resistant Staphylococcus aureus (MRSA), the antibacterial mechanism of Ponciruss trifoliata against MRSA was investigated. Ethyl acetate (EtOAc)-soluble extract of P. trifoliata methanolic extract was evaluated for antibacterial activity using minimum inhibitory concentration (MIC). An EtOAc sub-fraction 08 (EA08) from silica-gel open column chromatography exhibited strong anti-MRSA activity. Apart from the study to isolate single compound from EA08, a synergistic antibacterial effect between the sub-fraction and ß-lactam antibiotics against MRSA was determined. In order to elucidate the antibacterial restoring mechanism of EA08 on MRSA, mRNA expression of mecA gene and production penicillin-binding protein 2a (PBP2a) encoded by mecA gene were monitored. EA 08 showed the strongest antibacterial activity with MIC value of 256 µg ml(-1). MIC of oxacillin against MRSA was dramatically reduced from 512 to 16 µg ml(-1) in combination with 256 µg ml(-1) of EA08. The fractional inhibitory concentration index of oxacillin was measured at 0.53 in combination with EA08 against MRSA, suggesting that EA08-oxacillin combinations exert synergetic effect against MRSA. The analysis of RT-PCR and Western blotting profiles revealed that EA08 inhibited mRNA expression of mecA gene and production PBP2a, which is a key determinant for ß-lactam antibiotic resistance, in a dose-dependent manner. These results indicated that EA08 eventually led to the reduction or inhibition of PBP2a production through translational inhibition in MRSA.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Extratos Vegetais/farmacologia , Poncirus/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Plantas Medicinais
2.
Nat Prod Commun ; 9(10): 1469-72, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25522538

RESUMO

Neuraminidase (NA) is one of the key enzymes responsible for bacterial infection and pathogenesis. This study aimed to gain deeper insights into the inhibitory effects of flavone-glucosides (1-9) isolated from barley sprouts (BS) on neuraminidase activity. The isolated compounds were identified as, lutonarin (1), saponarin (2), isoorientin (3), orientin (4), isovitexin (5), isoscoparin-7-O-[6-sinapoyl]-glucoside (6), isoscoparin-7-O-[6-feruloyl]-glucoside (7), isovitexin-7-O-[6-sinapoyl]-glucoside (8), and isovitexin-7-O-[6-feruloyl]-glucoside (9). Among them, compounds 1-5 exhibited neuraminidase-inhibitory activities in a dose-dependent manner, with IC50 values ranging from 20.1 to 32.7 µM, in a non-competitive inhibition mode according to kinetic studies. Moreover, the individual flavone-glucoside levels differed notably, in particular, lutonarin (1) and saponarin (2) were shown to be present in the greatest amounts, according to UPLC analysis. Consequently, our results suggest that BS may be utilized as an effective NA inhibitor in human health food, additives, and feed.


Assuntos
Proteínas de Bactérias/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Flavonas/química , Flavonas/farmacologia , Glucosídeos/química , Glucosídeos/farmacologia , Hordeum/química , Neuraminidase/metabolismo , Ativação Enzimática/efeitos dos fármacos
3.
Water Environ Res ; 81(8): 748-54, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19774851

RESUMO

The determination of phosphate has been of great importance in the fields of clinical, environmental, and horticultural analysis for over three decades. New cobalt-based micro-electro mechanical systems (MEMS) microelectrode array (MEA) sensors for direct measurement of phosphate in small environmental samples, such as microbial aggregates, has been introduced and applied here for in situ measurement of phosphate within activated sludge flocs in the enhanced biological phosphorus removal process. The MEMS technologies offer the advantages of accurate fabrication methods, reduced complexity of the fabrication process, mass production, low cost, and increased reliability. Well-defined phosphate profiles across the flocs were observed under anaerobic conditions, during which, phosphate was released from the flocs, using the MEMS MEA sensor. The microprofiles were compared with the microprofiles measured using conventional phosphate microelectrodes. The developed MEMS MEA sensors were useful tools for the in situ measurement of phosphate in small aggregates.


Assuntos
Sistemas Microeletromecânicos/instrumentação , Fosfatos/análise , Fósforo/análise , Poluentes Químicos da Água/análise , Purificação da Água , Biodegradação Ambiental , Calibragem , Cobalto/química , Microeletrodos , Fosfatos/química , Fósforo/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA