Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
PLoS One ; 17(6): e0268919, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35657783

RESUMO

The appearance of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the lack of effective antiviral therapeutics for coronavirus disease 2019 (COVID-19), a highly infectious disease caused by the virus, demands the search for alternative therapies. Most antiviral drugs known are passive defenders which must enter the cell to execute their function and suffer from concerns such as permeability and effectiveness, therefore in this current study, we aim to identify peptide inactivators that can act without entering the cells. SARS-CoV-2 spike protein is an essential protein that plays a major role in binding to the host receptor angiotensin-converting enzyme 2 and mediates the viral cell membrane fusion process. SARS vaccines and treatments have also been developed with the spike protein as a target. The virtual screening experiment revealed antiviral peptides which were found to be non-allergen, non-toxic and possess good water solubility. U-1, GST-removed-HR2 and HR2-18 exhibit binding energies of -47.8 kcal/mol, -43.01 kcal/mol, and -40.46 kcal/mol, respectively. The complexes between these peptides and spike protein were stabilized through hydrogen bonds as well as hydrophobic interactions. The stability of the top-ranked peptide with the drug-receptor is evidenced by 50-ns molecular dynamics (MD) simulations. The binding of U-1 induces conformational changes in the spike protein with alterations in its geometric properties such as increased flexibility, decreased compactness, the increased surface area exposed to solvent molecules, and an increase in the number of total hydrogen bonds leading to its probable inactivation. Thus, the identified antiviral peptides can be used as anti-SARS-CoV-2 candidates, inactivating the virus's spike proteins and preventing it from infecting host cells.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/química , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Peptídeos/metabolismo , Peptídeos/farmacologia , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/química
2.
J King Saud Univ Sci ; 34(6): 102155, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35702062

RESUMO

Platycodon grandiflorus (Jacq.) A. DC. (Campanulaceae) is commonly known as a balloon flower whose rhizomes have been widely utilized in traditional Chinese medicine (TCM) and in various Japanese prescriptions for the treatment of respiratory diseases, diabetes, and inflammatory disorders. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19) global pandemic requires priming of the virus's spike (S) protein by cleavage of the S proteins by a multi-domain type II transmembrane serine protease, transmembrane protease serine 2 (TMPRSS2) to gain entry into the host cell. The current research aims at the screening of active phytocompounds of P. grandiflorus as potential inhibitors of cellular TMPRSS2 using molecular docking and molecular dynamics simulations approach. In silico toxicity analyses show that out of a total of 34 phytocompounds selected for the study, 12 compounds obey Lipinski's rule of five and have favourable pharmacokinetic properties. The top three lead molecules identified here were Apigenin, Luteolin and Ferulic acid which exhibited binding energies of -7.47 kcal/mol, -6.8 kcal/mol and -6.62 kcal/mol respectively with corresponding inhibition constants of 3.33 µM, 10.39 µM and 13.95 µM. The complexes between the lead molecules and the receptor were held by hydrogen bond interactions with key residues such as Gly383, Gly385, Glu389, Lys390, Asp435, Ser436, Ser441, Cys465 and Lys467, and hydrophobic interactions with surrounding residues. The stability of the protein-ligand complexes was evaluated during 100 ns molecular dynamics (MD) simulation by analysing key geometric properties such as RMSD, RMSF, radius of gyration, total solvent accessible surface area and the number of hydrogen bonds. The binding free energies analysis using MD simulations revealed that the compounds and TMPRSS2 have favourable thermodynamic interactions, which are primarily driven by van der Waals forces. As a result, the selected bioactive phytochemicals from P. grandiflorus that target the cellular TMPRSS2 could offer an alternative treatment option against SARS-CoV-2 infections.

3.
PLoS One ; 17(3): e0265231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35275977

RESUMO

Larrea tridentata (Sesse and Moc. ex DC.) Coville (family: Zygophyllaceae) is an aromatic evergreen shrub with resin-covered leaves, known to use in traditional medicine for diverse ailments. It also has immense pharmacological significance due to presence of powerful phenylpropanoids antioxidant, nordihydroguaiaretic acid (NDGA). The RNA sequence/transcriptome analyses connect the genomic information into the discovery of gene function. Hence, the acquaint analysis of L. tridentata is in lieu to characterize the transcriptome, and to identify the candidate genes involved in the phenylpropanoid biosynthetic pathway. To gain molecular insight, the bioinformatics analysis of transcriptome was performed. The total bases covered 48,630 contigs of length greater than 200 bp and above came out to 21,590,549 with an average GC content of 45% and an abundance of mononucleotide, SSR, including C3H, FAR1, and MADS transcription gene families. The best enzyme commission (EC) classification obtained from the assembled sequences represented major abundant enzyme classes e.g., RING-type E3 ubiquitin transferase and non-specific serine/threonine protein kinase. The KEGG pathway analysis mapped into 377 KEGG different metabolic pathways. The enrichment of phenylpropanoid biosynthesis pathways (22 genes i.e., phenylalanine ammonia-lyase, trans-cinnamate 4-monooxygenase, 4-coumarate-CoA ligase, cinnamoyl-CoA reductase, beta-glucosidase, shikimate O-hydroxycinnamoyl transferase, 5-O-(4-coumaroyl)-D-quinate 3'-monooxygenase, cinnamyl-alcohol dehydrogenase, peroxidase, coniferyl-alcohol glucosyltransferase, caffeoyl shikimate esterase, caffeoyl-CoA O-methyltransferase, caffeate O-methyltransferase, coniferyl-aldehyde dehydrogenase, feruloyl-CoA 6-hydroxylase, and ferulate-5-hydroxylase), and expression profile indicated antioxidant, anti-arthritic, and anticancer properties of L. tridentata. The present results could provide an important resource for squeezing biotechnological applications of L. tridentata.


Assuntos
Larrea , Transcriptoma , Antioxidantes , Redes e Vias Metabólicas/genética , Oxigenases de Função Mista
4.
Saudi J Biol Sci ; 28(12): 7517-7527, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34512097

RESUMO

Houttuynia cordata Thunb., a perennial herb belonging to the Saururaceae family is a well-known ingredient of Traditional Chinese medicine (TCM) with several therapeutic properties. During the severe acute respiratory syndrome (SARS) outbreak in China, it was one of the approved ingredients in SARS preventative formulations and therefore, the plant may contain novel bioactive chemicals that can be used to suppress the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus for which there are currently no effective drugs available. Like all RNA viruses, SARS-CoV-2 encode RNA-dependent RNA polymerase (RdRp) enzyme which aids viral gene transcription and replication. The present study is aimed at understanding the potential of bioactive compounds from H. cordata as inhibitors of the SARS-CoV-2 RdRp enzyme. We investigated the drug-likeness of the plant's active constituents, such as alkaloids, polyphenols, and flavonoids, as well as their binding affinity for the RdRp enzyme. Molecular docking experiments show that compounds 3 (1,2,3,4,5-pentamethoxy-dibenzo-quinolin-7-one), 14 (7-oxodehydroasimilobine), and 21 (1,2-dimethoxy-3-hydroxy-5-oxonoraporphine) have a high affinity for the drug target and that the complexes are maintained by hydrogen bonds with residues like Arg553, Cys622 and Asp623, as well as hydrophobic interactions with other residues. The lead compounds' complexes with the target enzyme remained stable throughout the molecular dynamics simulation. Analysis of molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics generalized Born surface area (MM-GBSA) revealed the key residues contributing considerably to binding free energy. Thus, the findings reveal the potential of H. cordata bioactive compounds as anti-SARS-CoV-2 drug candidate molecules against the target enzyme.

5.
PLoS One ; 16(7): e0254035, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34260631

RESUMO

Ficus carica L., commonly known as fig, has been used in traditional medicine for metabolic disorders, cardiovascular diseases, respiratory diseases and cancer. Various bioactive compounds have been previously isolated from the leaves, fruit, and bark, which have different pharmacological properties, but the anticancer mechanisms of this plant are not known. In the current study we focused on understanding the probable mechanisms underlying the anticancer activity of F. carica plant extracts by molecular docking and dynamic simulation approaches. We evaluated the drug-likeness of the active constituents of the plant and explored its binding affinity with selected anticancer drug target receptors such as cyclin-dependent kinase 2 (CDK-2), cyclin-dependent kinase 6 (CDK-6), topoisomerase-I (Topo I), topoisomerase-II (Topo II), B-cell lymphoma 2 (Bcl-2), and vascular endothelial growth factor receptor 2 (VEGFR-2). In silico toxicity studies revealed that thirteen molecules out of sixty-eight major active compounds in the plant extract have acceptable drug-like properties. Compound 37 (ß-bourbonene) has a good binding affinity with the majority of drug targets, as revealed by molecular docking studies. The complexes of the lead molecules with the drug receptors were stable in terms of molecular dynamics simulation derived parameters such as root mean square deviation and radius of gyration. The top ten residues contributing significantly to the binding free energies were deciphered through analysis of molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics generalized Born surface area (MM-GBSA). Thus, the results of our studies unravel the potential of F. carica bioactive compounds as anticancer candidate molecules against selected macromolecular receptors.


Assuntos
Antineoplásicos , Ficus , Simulação de Acoplamento Molecular , Sítios de Ligação , Humanos , Interações Hidrofóbicas e Hidrofílicas
6.
Saudi J Biol Sci ; 28(7): 3768-3775, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34220230

RESUMO

Adenium obesum (Forssk.) Roem. & Schult. belonging to the family Apocynaceae, is remarkable for its horticultural and ornamental values, poisonous nature, and medicinal uses. In order to have understanding of cp genome characterization of highly valued medicinal plant, and the evolutionary and systematic relationships, the complete plastome / chloroplast (cp) genome of A. obesum was sequenced. The assembled cp genome of A. obesum was found to be 154,437 bp, with an overall GC content of 38.1%. A total of 127 unique coding genes were annotated including 96 protein-coding genes, 28 tRNA genes, and 3 rRNA genes. The repeat structures were found to comprise of only mononucleotide repeats. The SSR loci are compososed of only A/T bases. The phylogenetic analysis of cp genomes revealed its proximity with Nerium oleander.

7.
Mitochondrial DNA B Resour ; 5(1): 754-755, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33366735

RESUMO

The complete chloroplast genome sequences of vulnerable medicinal plant Saraca asoca (Roxb.) Willd. (Fabaceae) was sequenced. A total of 5,206,216,851 paired-end filtered reads of 151 bp were obtained. The plastome length (including LSC, SSC, IRa, and IRb) was 137,743 bp (GC content: 35.26%). A total of 126 coding genes which includes 97 CDS, 24 tRNA, and five rRNA genes were annotated. The phylogenetic analysis attempts to establish molecular signature in order to differentiate genuine sample of S. asoca from its adulterants easily.

8.
Saudi J Biol Sci ; 27(7): 1907-1911, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32565713

RESUMO

Adenium obesum (Forssk.) Roem. & Schult. is a promising medicinal plant belonging to the Apocynaceae family. It is a rich source of various phytochemicals such as cardiac glycosides, flavonoids, terpeniods, pregnanes etc. which have different pharmacological properties such as anticancer, antibacterial, acaricidal etc. While previous reports showed the anticancer activity of the aerial parts of the plant extract of A. obesum, the mechanisms of action of its chemical constituents are not known. The present study is aimed at elucidation of plausible mechanisms of anticancer activity of the plant by evaluating the binding interaction of its nine major selected compounds with macromolecular receptors implicated in the initiation and progression of cancer using various in silico approaches. Molecular docking results showed that the compound Δ16-3-Acetyldigitoxigenin (16-anhydro-3-acetylgitoxigenin) scored the best binding energy scores with the majority of the target proteins. The molecular binding of the compound was stabilized through hydrogen bonds as well as hydrophobic interactions, and also possesses favorable drug-like properties without significant toxicities.

9.
Life Sci ; 255: 117831, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32450166

RESUMO

A new SARS coronavirus (SARS-CoV-2) belonging to the genus Betacoronavirus has caused a pandemic known as COVID-19. Among coronaviruses, the main protease (Mpro) is an essential drug target which, along with papain-like proteases catalyzes the processing of polyproteins translated from viral RNA and recognizes specific cleavage sites. There are no human proteases with similar cleavage specificity and therefore, inhibitors are highly likely to be nontoxic. Therefore, targeting the SARS-CoV-2 Mpro enzyme with small molecules can block viral replication. The present study is aimed at the identification of promising lead molecules for SARS-CoV-2 Mpro enzyme through virtual screening of antiviral compounds from plants. The binding affinity of selected small drug-like molecules to SARS-CoV-2 Mpro, SARS-CoV Mpro and MERS-CoV Mpro were studied using molecular docking. Bonducellpin D was identified as the best lead molecule which shows higher binding affinity (-9.28 kcal/mol) as compared to the control (-8.24 kcal/mol). The molecular binding was stabilized through four hydrogen bonds with Glu166 and Thr190 as well as hydrophobic interactions via eight residues. The SARS-CoV-2 Mpro shows identities of 96.08% and 50.65% to that of SARS-CoV Mpro and MERS-CoV Mpro respectively at the sequence level. At the structural level, the root mean square deviation (RMSD) between SARS-CoV-2 Mpro and SARS-CoV Mpro was found to be 0.517 Å and 0.817 Å between SARS-CoV-2 Mpro and MERS-CoV Mpro. Bonducellpin D exhibited broad-spectrum inhibition potential against SARS-CoV Mpro and MERS-CoV Mpro and therefore is a promising drug candidate, which needs further validations through in vitro and in vivo studies.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/enzimologia , Infecções por Coronavirus/tratamento farmacológico , Extratos Vegetais/farmacologia , Pneumonia Viral/tratamento farmacológico , Proteínas não Estruturais Virais/antagonistas & inibidores , Sequência de Aminoácidos , Antivirais/química , Betacoronavirus/metabolismo , Sítios de Ligação , COVID-19 , Simulação por Computador , Proteases 3C de Coronavírus , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Simulação de Acoplamento Molecular , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Inibidores de Proteases/química , Ligação Proteica , SARS-CoV-2 , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
10.
Curr Pharm Biotechnol ; 21(9): 842-851, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31995002

RESUMO

BACKGROUND: Estrogen Receptors (ER) are members of the nuclear intracellular receptors family. ER once activated by estrogen, it binds to DNA via translocating into the nucleus and regulates the activity of various genes. Withaferin A (WA) - an active compound of a medicinal plant Withania somnifera was reported to be a very effective anti-cancer agent and some of the recent studies has demonstrated that WA is capable of arresting the development of breast cancer via targeting estrogen receptor. OBJECTIVE: The present study is aimed at understanding the molecular level interactions of ER and Tamoxifen in comparison to Withaferin A using In-silico approaches with emphasis on Withaferin A binding capability with ER in presence of point mutations which are causing de novo drug resistance to existing drugs like Tamoxifen. METHODS: Molecular modeling and docking studies were performed for the Tamoxifen and Withaferin A with the Estrogen receptor. Molecular docking simulations of estrogen receptor in complex with Tamoxifen and Withaferin A were also performed. RESULTS: Amino acid residues, Glu353, Arg394 and Leu387 was observed as crucial for binding and stabilizing the protein-ligand complex in case of Tamoxifen and Withaferin-A. The potential of Withaferin A to overcome the drug resistance caused by the mutations in estrogen receptor to the existing drugs such as Tamoxifen was demonstrated. CONCLUSION: In-silico analysis has elucidated the binding mode and molecular level interactions which are expected to be of great help in further optimizing Withaferin A or design / discovery of future breast cancer inhibitors targeting estrogen receptor.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/metabolismo , Receptores de Estrogênio/antagonistas & inibidores , Withania/química , Vitanolídeos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Simulação por Computador , Humanos , Ligantes , Simulação de Acoplamento Molecular , Plantas Medicinais , Mutação Puntual , Ligação Proteica , Receptores de Estrogênio/genética , Vitanolídeos/isolamento & purificação
11.
PeerJ ; 7: e6194, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30648018

RESUMO

Vitex rotundifolia is an important coastal and medicinal plant, and is recorded in the List of the Important Wild Plants for Conservation in China and Japan. However, an effective conservation strategy is lacking. In the present study, the genetic diversity and population structure were analyzed using phylogeographical methods based on the trnH-psbA and trnG-trnS intergenic spacers of the chloroplast DNA (cpDNA) sequences from 157 individuals from 25 sampling sites for V. rotundifolia and V. trifolia plus the internal transcribed spacer (ITS) of the nuclear ribosomal DNA (nrDNA) sequences of 177 individuals from 27 sampling sites. The results showed that V. rotundifolia and V. trifolia had eight cpDNA and two nrDNA haplotypes, respectively, and the V. rotundifolia has a low level of genetic diversity (haplotype diversity h d,cp = 0.360, h d,nr = 0.440), a more pronounced genetic differentiation among populations (population differentiation at the species level (G ST) = 0.201, population differentiation at the allele level (N ST) = 0.462), and an insignificantly different phylogeographical structure (N ST > G ST, P > 0.05). In addition, haplotype network analyses indicated that V. rotundifolia and V. trifolia have distinct haplotypes. Divergence dating based on BEAST software analyses showed that most cpDNA clades diverged in the late Pleistocene era. Demographic analysis indicated that V. rotundifolia underwent a rapid demographic expansion. Some scientific strategies are suggested for resource conservation of V. rotundifolia based on its genetic diversity and population structure.

12.
Mitochondrial DNA B Resour ; 4(2): 2349-2350, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33365538

RESUMO

Hylomecon japonica, a widespread species in East Asia, is a valuable horticultural and medicinal plant. Here, we obtained the first complete sequence of the H. japonica chloroplast genome. The complete cp genome was 160,011 bp long, with a large single-copy region (LSC, 88,165 bp) and a small single copy region (SSC, 18,378 bp) separated by a pair of inverted repeats (IRs, 26,734 bp). The cp genome contained 114 unique genes, including 80 protein-coding genes, 30 tRNA genes, and four rRNA genes. The phylogenetic analysis indicated that H. japonica is close related with Coreanomecon hylomeconoides.

13.
Mol Med Rep ; 16(6): 8463-8470, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28983588

RESUMO

Dipterocarpus obtusifolius has been traditionally used as a herbal medicine and is considered to have anticancer properties. The biological activity of D. obtusifolius in inflammation and the underlying mechanisms of its activity remain to be elucidated. The present study investigated the effects of D. obtusifolius methanolic extract (DOME) on lipopolysaccharide (LPS)­stimulated inflammation in RAW264.7 cells. The effects of DOME on the production of nitric oxide, prostaglandin E2 and pro­inflammatory cytokines were assessed by ELISA, western blot analysis and reverse transcription­quantitative polymerase chain reaction. It was demonstrated that expression of inducible nitric oxide synthase, cyclooxygenase­2, interleukin­1ß and tumor necrosis factor­α was suppressed by DOME in LPS­stimulated cells. Furthermore, treatment with DOME suppressed phosphorylation of mitogen activated protein kinase (MAPK) molecules, including extracellular signal­regulated kinase, c­Jun N­terminal kinase and p38 MAPK. Translocation of the nuclear factor­κB p65 subunit into the nucleus was additionally inhibited by DOME. Phosphorylation of MAPK promoter activity was inhibited by treatment with DOME, PD98059, SB202190 and SP600125. These results demonstrated that DOME inhibits LPS­induced inflammatory responses. Therefore, DOME may be a potential therapeutic approach for the treatment of inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/etiologia , Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Macrófagos/imunologia , Macrófagos/metabolismo , Extratos Vegetais/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Inflamação/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , Células RAW 264.7
14.
Int J Mol Med ; 38(2): 482-90, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27314211

RESUMO

Lagerstroemia ovalifolia Teijsm. & Binn. has traditionally been used as an herbal medicine and possesses anti-inflammatory properties. However, the mechanisms underlying its anti-inflammatory effects remain poorly understood. For this purpose, we aimed to investigate the effects of methanolic extract of L. ovalifolia (LOME) on nitric oxide (NO) and prostaglandin E2 (PGE2) production, as well as the underlying molecular mechanisms responsible for these effects, in lipopolysaccharide (LPS)­stimulated RAW264.7 macrophages. We examined the effects of LOME on the production of NO and PGE2 in LPS-stimulated RAW264.7 cells. To explore the anti-inflammatory mechanisms of LOME, we measured the mRNA or protein expression of the pro­inflammatory mediators induced by LOME in the LPS-stimulated RAW264.7 cells. LOME significantly inhibited the production of NO, PGE2, interleukin (IL)-6, IL-1ß, and tumor necrosis factor-α (TNF-α) in LPS-stimulated RAW264.7 cells. Moreover, LOME suppressed the mRNA and protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and inhibited the phosphorylation of the mitogen-activated protein kinases (MAPKs), with a reduction in the nuclear translocation of nuclear factor (NF)-κB in LPS-stimulated RAW264.7 cells. Taken together, these findings suggest that LOME may exert anti-inflammatory effects in vitro in LPS-stimulated RAW264.7 macrophages and thus, may have potential for use as an adjuvant treatment of inflammatory diseases.


Assuntos
Inflamação/metabolismo , Lagerstroemia/química , Macrófagos/metabolismo , Macrófagos/patologia , Metanol/química , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Ativação Enzimática/efeitos dos fármacos , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Nitrilas/farmacologia , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Células RAW 264.7 , Sulfonas/farmacologia , Transcrição Gênica/efeitos dos fármacos
15.
Int J Mol Med ; 37(4): 1091-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26952971

RESUMO

Clausena anisata (Willd.) Hook.f. ex Benth. (CA), which is widely used in traditional medicine, reportedly exerts antitumor, anti-inflammatory and other important therapeutic effects. The aim of the present study was to investigate the potential therapeutic effects of CA in a mouse model of lipopolysaccharide (LPS)-induced acute lung injury (ALI) and in LPS-stimulated RAW 264.7 cells. Male C57BL/6 mice were administered treatments for 3 days by oral gavage. On day 3, the mice were instilled intranasally with LPS or PBS followed 3 h later by oral CA (30 mg/kg) or vehicle administration. In vitro, CA decreased nitric oxide (NO) production and pro-inflammatory cytokines, such as interleukin (IL)-6 and prostaglandin E2 (PGE2), in LPS-stimulated RAW 264.7 cells. CA also reduced the expression of pro-inflammatory mediators, such as cyclooxygenase-2. In vivo, CA administration significantly reduced inflammatory cell numbers in the bronchoalveolar lavage fluid (BALF) and suppressed pro-inflammatory cytokine levels, including tumor necrosis factor-α (TNF-α), IL-6, and IL-1ß, as well as reactive oxygen species production in the BALF. CA also effectively reduced airway inflammation in mouse lung tissue of an LPS-induced ALI mouse model, in addition to decreasing inhibitor κB (IκB) and nuclear factor-κB (NF-κB) p65 phosphorylation. Taken together, the findings demonstrated that CA inhibited inflammatory responses in a mouse model of LPS-induced ALI and in LPS-stimulated RAW 264.7 cells. Thus, CA is a potential candidate for development as an adjunctive treatment for inflammatory disorders, such as ALI.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Clausena/química , Lipopolissacarídeos/imunologia , Pulmão/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Animais , Anti-Inflamatórios/química , Citocinas/imunologia , Dinoprostona/imunologia , Interleucina-6/imunologia , Pulmão/imunologia , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/química , Espécies Reativas de Oxigênio/imunologia , Fator de Necrose Tumoral alfa/imunologia
16.
Saudi J Biol Sci ; 23(2): 229-36, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26981004

RESUMO

Natural products from wild and medicinal plants, either in the form of crude extracts or pure compounds provide unlimited opportunities for new drug leads owing to the unmatched availability of chemical diversity. In the present study, the cytotoxic potential of crude ethanolic extract of Ochradenus arabicus was analyzed by MTT cell viability assay in MCF-7 adenocarcinoma breast cancer cells. We further investigated its effect against oxidative stress induced by anticancer drug doxorubicin. In addition, Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) based chromatographic profiling of crude extract of O. arabicus was performed. The MTT assay data showed that the extract is moderately toxic to the MCF-7 cells. However, its treatment alone does not induce oxidative stress while doxorubicin increases the level of oxidative stress in MCF-7 cells. Whereas, simultaneous treatment of plant extract and doxorubicin significantly (p < 0.05) decreased the level of intracellular reactive oxygen species (ROS) and lipid peroxidation while an increase in the reduced glutathione and superoxide dismutase activity was observed in time and dose dependent manner. Hence, our finding confirmed cytotoxic and antioxidant potential of crude extract of O. arabicus in MCF-7 cells. However, further investigations on O. arabicus as a potential chemotherapeutic agent are needed. The analysis of bioactive compounds present in the plant extracts involving the applications of common phytochemical screening assays such as chromatographic techniques is discussed.

17.
Colloids Surf B Biointerfaces ; 141: 158-169, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26852099

RESUMO

Silver nanoparticles (AgNPs) are an important class of nanomaterial used for a wide range of industrial and biomedical applications. Adenium obesum is a plant of the family Apocynaceae that is rich in toxic cardiac glycosides; however, there is scarce information on the anticancer potential of its AgNPs. We herein report the novel biosynthesis of AgNPs using aqueous leaf extract of A. obesum (AOAgNPs). The synthesis of AOAgNPs was monitored by color change and ultraviolet-visible spectroscopy (425 nm). It was further characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The FTIR spectra for the AOAgNPs indicated the presence of terpenoids, long chain fatty acids, secondary amide derivatives and proteins that could be responsible for the reduction and capping of the formed AOAgNPs. X-ray diffraction confirmed the crystallinity of the AgNPs. The TEM images revealed mostly spherical particles in the size range of 10-30 nm. The biological properties of novel AOAgNPs were investigated on MCF-7 breast cancer cells. Cell viability was determined by the MTT assay. Generation of reactive oxygen species (ROS), DNA damage, induction of apoptosis and autophagy were assessed. A dose-dependent decrease in the cell viability was observed. The IC50 value was calculated as 217 µg/ml. Both qualitative and quantitative evaluation confirmed about a 2.5 fold increase in the generation of ROS at the highest concentration of 150 µg/ml. A significant (p<0.05) increase in the DNA damage evaluated by comet assay was evident. Flow cytometry revealed an increase in the apoptotic cells (24%) in the AOAgNPs treated group compared to the control. Acridine orange staining of acidic vesicles in exposed cells confirmed the induction of autophagy. These findings suggest that AOAgNPs increased the level of ROS resulting in heightened the DNA damage, apoptosis and autophagy in MCF-7 cells.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Dano ao DNA , Nanopartículas Metálicas/intoxicação , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Prata/química , Apocynaceae/química , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Relação Dose-Resposta a Droga , Humanos , Células MCF-7 , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Folhas de Planta/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
18.
Mol Med Rep ; 12(5): 6821-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26397193

RESUMO

Azorella compacta Phil. (AC) is an alpine medicinal plant used traditionally for antibacterial treatment. Recent studies have revealed that this plant also has anti­diabetic effects, but that it is toxic. The present study investigated the underlying mechanisms of action of AC extract against human leukemia HL60 cells. Apoptosis induction was measured by MTT assay, fluorescence microscopy, DNA fragmentation assay, flow cytometric analysis, reverse transcription quantitative polymerase chain reaction and western blot analyses. It was found that AC extract inhibited the growth of HL60 and other cancer cell lines in a dose­dependent manner. The cytotoxic effects of AC extract on HL60 cells were associated with apoptosis characterized by DNA fragmentation and dose­dependent increases in Annexin V­positive cells, as determined by flow cytometric analysis. AC­extract­induced apoptosis was accompanied by activated/cleaved caspase­3, caspase­9 and poly(adenosine diphosphate­ribose) polymerase (PARP). The increases in apoptosis were also associated with decreases of the apoptosis-inhibitor B-cell lymphoma 2 (Bcl­2), upregulation of pro­apoptotic Bcl-2-associated X (Bax) protein and downregulation of anti­apoptotic Bcl extra large protein. Furthermore, western blot analysis of mitogen-activated protein kinase (MAPK)-associated proteins indicated that treatment with AC extract increased the levels of c-Jun N-terminal kinase, extracellular signal-regulated kinase and p38. In addition, the expression of Bax and cleaved PARP was blocked when AC treatment was performed in the presence of MAPK inhibitors. It was therefore concluded that AC induced apoptosis in human leukemia HL60 cells via an intrinsic pathway controlled through MAPK-associated signaling.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apiaceae/química , Apoptose/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Proteínas Reguladoras de Apoptose/metabolismo , Caspases/metabolismo , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática , Células HL-60 , Células Hep G2 , Humanos , Concentração Inibidora 50 , Sistema de Sinalização das MAP Quinases , Metanol/química , Extratos Vegetais/isolamento & purificação , Solventes/química
19.
J Agric Food Chem ; 63(38): 8631-9, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26345477

RESUMO

Lespedeza species are useful for pasture and energy crops as well as medical plants. We determined the metabolites discriminated from the each growth period (3, 4, 6, 8, 15, and 18 months) after germination in leaves and stems of Lespedeza maximowizii by a metabolomics technique. Specifically, levels of sugars and luteolin-dominated derivatives were significantly elevated in samples harvested in November. This may be related to the cold tolerance mechanism against the low temperatures of the winter season. The concentrations of secondary metabolites, isoflavones and flavanones, as well as tyrosinase inhibitory activity were the highest in the 6 month samples, which were harvested in September, during the fall season. The tyrosinase inhibitory activity in leaves was higher than that in stems irrespective of the growth period. This study suggests that mass spectrometry-based metabolite profiling could be used as a tool to examine quantitative or qualitative metabolite changes related to seasonal variations and to understand the correlation between activity and metabolites.


Assuntos
Inibidores Enzimáticos/análise , Lespedeza/química , Lespedeza/crescimento & desenvolvimento , Monofenol Mono-Oxigenase/antagonistas & inibidores , Extratos Vegetais/análise , Agaricales/química , Agaricales/enzimologia , Inibidores Enzimáticos/metabolismo , Lespedeza/metabolismo , Metaboloma , Monofenol Mono-Oxigenase/análise , Extratos Vegetais/metabolismo , Estações do Ano
20.
J Ethnopharmacol ; 175: 1-8, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26342519

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Callicarpa japonica Thunb. (CJT) is traditionally used as an herbal remedy for the treatment of inflammatory diseases in Korea, China, and Japan. In this study, we evaluated the effects of C. japonica Thunb. (CJT) on the development of COPD using a Cigarette smoke (CS)-induced murine model and cigarette smoke condensate (CSC)-stimulated H292 cells, human pulmonary mucoepidermoid cell line. MATERIAL AND METHODS: C. japonica Thunb. was isolated from the leaves and stem of C. japonica. The methanol extract profile was obtained by UPLC Q-TOF-MS analysis. In in vivo experiment, the mice received 1h of cigarette smoke for 10 days. C. japonica Thunb. was administered to mice by oral gavage 1h before cigarette smoke exposure for 10 days. In in vitro experiment, we evaluated the effect of C. japonica Thunb. on the expression of MUC5AC and proinflammatory cytokines in H292 cells stimulated with CSC. RESULTS: CJT treatment effectively suppressed the infiltration of neutrophils, and decreased the production of ROS and the activity of neutrophil elastase in the bronchoalveolar lavage fluid (BALF) induced by CS. CJT also significantly attenuated production of proinflammatory cytokines such as IL-6 and TNF-α in the BALF, and reduced the infiltration of inflammatory cells and the production of mucus in lung tissue induced by CS. In in vitro experiments, CJT decreased the expression of MUC5AC and proinflammatory cytokines in CSC-stimulated H292 cells. Furthermore, CJT attenuated the phosphorylation of ERK induced by CSC in H292 cells. Taken together, CJT effectively reduced the neutrophil airway inflammation and mucus secretion induced by CS in murine model, and inhibited the expression of MUC5AC in CSC-stimulated H292 human lung cell line. These findings suggest that CJT has a therapeutic potential for the treatment of COPD.


Assuntos
Callicarpa , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Fumaça/efeitos adversos , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Interleucina-6/imunologia , Elastase de Leucócito/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Muco/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Folhas de Planta , Caules de Planta , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Espécies Reativas de Oxigênio/metabolismo , Nicotiana , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA