Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 12(2): 214-9, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26584654

RESUMO

Recently, the appeal of 2D black phosphorus (BP) has been rising due to its unique optical and electronic properties with a tunable band gap (≈0.3-1.5 eV). While numerous research efforts have recently been devoted to nano- and optoelectronic applications of BP, no attention has been paid to promising medical applications. In this article, the preparation of BP-nanodots of a few nm to <20 nm with an average diameter of ≈10 nm and height of ≈8.7 nm is reported by a modified ultrasonication-assisted solution method. Stable formation of nontoxic phosphates and phosphonates from BP crystals with exposure in water or air is observed. As for the BP-nanodot crystals' stability (ionization and persistence of fluorescent intensity) in aqueous solution, after 10 d, ≈80% at 1.5 mg mL(-1) are degraded (i.e., ionized) in phosphate buffered saline. They showed no or little cytotoxic cell-viability effects in vitro involving blue- and green-fluorescence cell imaging. Thus, BP-nanodots can be considered a promising agent for drug delivery or cellular tracking systems.


Assuntos
Tecnologia Biomédica/métodos , Nanopartículas/química , Fósforo/química , Animais , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fluorescência , Humanos , Microscopia de Força Atômica , Fenômenos Ópticos , Análise Espectral Raman , Difração de Raios X
2.
Sci Rep ; 4: 6740, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25338845

RESUMO

It is known that water purified by conventional TiO2 photocatalysts may not be safe enough for drinking, due to the toxicity by tiny existence of TiO2 nanoparticles after water treatment. We herein demonstrate a facile design of a three-dimensional (3D) TiO2 photocatalyst structure with which both the efficiency of purification and the safety level of the final purified water can be improved and ensured, respectively. The structure, consisting of 3D sulfur-doped TiO2 microtubes in nanotubes (eco-TiO2), is suitable for both environmental and bio-medical applications. Investigation of its formation mechanism reveals that anodic aluminum oxide (AAO), owing to a spatial constraint, causes a simple, nanoparticles-to-nanotubes structural rearrangement as a template for nanotube growth. It is found that eco-TiO2 can be activated under visible-light irradiation by non-metal (sulfur; S) doping, after which it shows visible-light photocatalytic activities over a range of solar energy. Importantly, an in vitro cytotoxicity test of well-purified water by eco-TiO2 confirms that eco-TiO2 satisfies the key human safety conditions.


Assuntos
Água Potável , Titânio/toxicidade , Purificação da Água , Óxido de Alumínio/química , Humanos , Nanopartículas/química , Nanotubos/química , Titânio/química
3.
Mater Sci Eng C Mater Biol Appl ; 42: 757-62, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25063177

RESUMO

This study evaluates the utility of an antibacterial microneedle composed of green tea (GT) extract and hyaluronic acid (HA), for the efficient delivery of GT. These microneedles have the potential to be a patient-friendly method for the conventional sustained release of drugs. In this study, a fabrication method using a mold-based technique to produce GT/HA microneedles with a maximum area of ~50mm(2) with antibacterial properties was used to manufacture transdermal drug delivery systems. Fourier transform infrared (FTIR) spectrometry was carried out to observe the potential modifications in the microneedles, when incorporated with GT. The degradation rate of GT in GT/HA microneedles was controlled simply by adjusting the HA composition. The effects of different ratios of GT in the HA microneedles were determined by measuring the release properties. In HA microneedles loaded with 70% GT (GT70), a continuous higher release rate was sustained for 72h. The in vitro cytotoxicity assays demonstrated that GT/HA microneedles were not generally cytotoxic to Chinese hamster ovary cells (CHO-K1), human embryonic kidney cells (293T), and mouse muscle cells (C2C12), which were treated for 12 and 24h. Antimicrobial activity of the GT/HA microneedles was demonstrated by ~95% growth reduction of gram negative [Escherichia coli (E. coli), Pseudomonas putida (P. putida), and Salmonella typhimurium (S. typhimurium)] and gram positive bacteria [Staphylococcus aureus (S. Aureus) and Bacillus subtilis (B. subtilis)], with GT70. Furthermore, GT/HA microneedles reduced bacterial growth of infected wound sites in the skin and improved wound healing process of skin in rat model.


Assuntos
Antibacterianos/farmacologia , Camellia sinensis/química , Microtecnologia/instrumentação , Agulhas , Extratos Vegetais/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/química , Bactérias/efeitos dos fármacos , Infecções Bacterianas , Células CHO , Cricetinae , Cricetulus , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Células HEK293 , Humanos , Ácido Hialurônico/química , Masculino , Extratos Vegetais/química , Ratos Sprague-Dawley , Adesivo Transdérmico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA