Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(50): 20266-71, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24282303

RESUMO

T-type Ca(2+) channels in thalamocortical (TC) neurons have long been considered to play a critical role in the genesis of sleep spindles, one of several TC oscillations. A classical model for TC oscillations states that reciprocal interaction between synaptically connected GABAergic thalamic reticular nucleus (TRN) neurons and glutamatergic TC neurons generates oscillations through T-type channel-mediated low-threshold burst firings of neurons in the two nuclei. These oscillations are then transmitted from TC neurons to cortical neurons, contributing to the network of TC oscillations. Unexpectedly, however, we found that both WT and KO mice for CaV3.1, the gene for T-type Ca(2+) channels in TC neurons, exhibit typical waxing-and-waning sleep spindle waves at a similar occurrence and with similar amplitudes and episode durations during non-rapid eye movement sleep. Single-unit recording in parallel with electroencephalography in vivo confirmed a complete lack of burst firing in the mutant TC neurons. Of particular interest, the tonic spike frequency in TC neurons was significantly increased during spindle periods compared with nonspindle periods in both genotypes. In contrast, no significant change in burst firing frequency between spindle and nonspindle periods was noted in the WT mice. Furthermore, spindle-like oscillations were readily generated within intrathalamic circuits composed solely of TRN and TC neurons in vitro in both the KO mutant and WT mice. Our findings call into question the essential role of low-threshold burst firings in TC neurons and suggest that tonic firing is important for the generation and propagation of spindle oscillations in the TC circuit.


Assuntos
Ondas Encefálicas/fisiologia , Modelos Neurológicos , Neurônios/metabolismo , Periodicidade , Sono/fisiologia , Tálamo/metabolismo , Animais , Canais de Cálcio Tipo T/genética , Eletroencefalografia , Camundongos , Camundongos Knockout
2.
Proc Natl Acad Sci U S A ; 106(51): 21912-7, 2009 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-19955421

RESUMO

Absence seizures are characterized by cortical spike-wave discharges (SWDs) on electroencephalography, often accompanied by a shift in the firing pattern of thalamocortical (TC) neurons from tonic to burst firing driven by T-type Ca(2+) currents. We recently demonstrated that the phospholipase C beta4 (PLCbeta4) pathway tunes the firing mode of TC neurons via the simultaneous regulation of T- and L-type Ca(2+) currents, which prompted us to investigate the contribution of TC firing modes to absence seizures. PLCbeta4-deficient TC neurons were readily shifted to the oscillatory burst firing mode after a slight hyperpolarization of membrane potential. TC-limited knockdown as well as whole-animal knockout of PLCbeta4 induced spontaneous SWDs with simultaneous behavioral arrests and increased the susceptibility to drug-induced SWDs, indicating that the deletion of thalamic PLCbeta4 leads to the genesis of absence seizures. The SWDs were effectively suppressed by thalamic infusion of a T-type, but not an L-type, Ca(2+) channel blocker. These results reveal a primary role of TC neurons in the genesis of absence seizures and provide strong evidence that an alteration of the firing property of TC neurons is sufficient to generate absence seizures. Our study presents PLCbeta4-deficient mice as a potential animal model for absence seizures.


Assuntos
Epilepsia Tipo Ausência/enzimologia , Fosfolipase C beta/fisiologia , Tálamo/fisiopatologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/efeitos dos fármacos , Eletroencefalografia , Ativadores de Enzimas/farmacologia , Epilepsia Tipo Ausência/fisiopatologia , Agonistas GABAérgicos/farmacologia , Inativação Gênica , Potenciais da Membrana , Camundongos , Camundongos Knockout , Fosfolipase C beta/genética , Tálamo/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA