Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 18(12): 7619-7627, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30474985

RESUMO

In this study, Mo3Se3- single-chain atomic crystals (SCACs) with atomically small chain diameters of ∼0.6 nm, large surface areas, and mechanical flexibility were synthesized and investigated as an extracellular matrix (ECM)-mimicking scaffold material for tissue engineering applications. The proliferation of L-929 and MC3T3-E1 cell lines increased up to 268.4 ± 24.4% and 396.2 ± 8.1%, respectively, after 48 h of culturing with Mo3Se3- SCACs. More importantly, this extremely high proliferation was observed when the cells were treated with 200 µg mL-1 of Mo3Se3- SCACs, which is above the cytotoxic concentration of most nanomaterials reported earlier. An ECM-mimicking scaffold film prepared by coating Mo3Se3- SCACs on a glass substrate enabled the cells to adhere to the surface in a highly stretched manner at the initial stage of cell adhesion. Most cells cultured on the ECM-mimicking scaffold film remained alive; in contrast, a substantial number of cells cultured on glass substrates without the Mo3Se3- SCAC coating did not survive. This work not only proves the exceptional biocompatible and bioactive characteristics of the Mo3Se3- SCACs but also suggests that, as an ECM-mimicking scaffold material, Mo3Se3- SCACs can overcome several critical limitations of most other nanomaterials.


Assuntos
Materiais Biomiméticos/química , Matriz Extracelular/química , Molibdênio/química , Selênio/química , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Adesão Celular , Linhagem Celular , Proliferação de Células , Cristalização , Camundongos , Modelos Moleculares , Engenharia Tecidual
2.
Biosens Bioelectron ; 94: 643-650, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28376397

RESUMO

The accuracy of a bioassay based on smartphone-integrated fluorescent biosensors has been limited due to the occurrence of false signals from non-specific reactions as well as a high background and low signal-to-noise ratios for complementary metal oxide semiconductor image sensors. To overcome this problem, we demonstrate dual-wavelength fluorescent detection of biomolecules with high accuracy. Fluorescent intensity can be quantified using dual wavelengths simultaneously, where one decreases and the other increases, as the target analytes bind to the split capture and detection aptamer probes. To do this, we performed smartphone imaging-based fluorescence microscopy using a microarray platform on a substrate with metal-enhanced fluorescence (MEF) using Ag film and Al2O3 nano-spacer. The results showed that the sensitivity and specificity of the dual-wavelength fluorescent quantitative assay for the target biomolecule 17-ß-estradiol in water were significantly increased through the elimination of false signals. The detection limit was 1pg/mL and the area under the receiver operating characteristic curve of the proposed assay (0.922) was comparable to that of an enzyme-linked immunosorbent assay (0.956) from statistical accuracy tests using spiked wastewater samples. This novel method has great potential as an accurate point-of-care testing technology based on mobile platforms for clinical diagnostics and environmental monitoring.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Estradiol/isolamento & purificação , Óxido de Alumínio/química , Estradiol/química , Humanos , Limite de Detecção , Microscopia de Fluorescência , Nanopartículas/química , Prata/química , Smartphone/instrumentação , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA