Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Metab ; 6(2): 343-358, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38351124

RESUMO

The canonical biological function of selenium is in the production of selenocysteine residues of selenoproteins, and this forms the basis for its role as an essential antioxidant and cytoprotective micronutrient. Here we demonstrate that, via its metabolic intermediate hydrogen selenide, selenium reduces ubiquinone in the mitochondria through catalysis by sulfide quinone oxidoreductase. Through this mechanism, selenium rapidly protects against lipid peroxidation and ferroptosis in a timescale that precedes selenoprotein production, doing so even when selenoprotein production has been eliminated. Our findings identify a regulatory mechanism against ferroptosis that implicates sulfide quinone oxidoreductase and expands our understanding of selenium in biology.


Assuntos
Ferroptose , Selênio , Selênio/farmacologia , Selênio/metabolismo , Ubiquinona/farmacologia , Selenoproteínas/metabolismo , Sulfetos , Oxirredutases
2.
Methods Enzymol ; 662: 1-24, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35101206

RESUMO

The production of selenoproteins in cancer cells is dependent on uptake of selenium and processing via the selenocysteine biosynthesis pathway. Both the uptake and processing of selenium has recently shown to be upregulated in subsets of cancer cells due to their increased expression of xCT transporter, and the resulting increased expression of selenoproteins such as GPX4 can play multiple roles in cancer cells such as providing protection against ferroptotic insults. Here, we describe a set of protocols designed to measure this process in cancer cell culture-the measurement of xCT transporter expression and activity, the intracellular uptake of selenium in cancer cells, and the expression of selenoproteins as the final functional readout of this process. The successful measurement of xCT requires non-denaturing western blotting of xCT subunits, while its activity is determined by the measurement of reduced thiol groups that accumulate over time, as determined by Ellman's reagent. Selenium uptake is determined by supplementing a selenium source and then measuring total intracellular selenium levels, which is determined from digested cellular material using a reactive fluorescent probe or via inductively coupled plasma mass spectrometry. Finally, specific tips for efficiently determining the expression level of a set of "indicator" selenoproteins is provided. These parameters allow one to determine the "selenophilicity" of cells, i.e., the ability of cells to utilize selenite to upregulate their selenoprotein production and thus antioxidant defenses.


Assuntos
Selênio , Antioxidantes , Selênio/metabolismo , Selenoproteínas/metabolismo
3.
Nat Metab ; 2(7): 603-611, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32694795

RESUMO

The micronutrient selenium is incorporated via the selenocysteine biosynthesis pathway into the rare amino acid selenocysteine, which is required in selenoproteins such as glutathione peroxidases and thioredoxin reductases1,2. Here, we show that selenophosphate synthetase 2 (SEPHS2), an enzyme in the selenocysteine biosynthesis pathway, is essential for survival of cancer, but not normal, cells. SEPHS2 is required in cancer cells to detoxify selenide, an intermediate that is formed during selenocysteine biosynthesis. Breast and other cancer cells are selenophilic, owing to a secondary function of the cystine/glutamate antiporter SLC7A11 that promotes selenium uptake and selenocysteine biosynthesis, which, by allowing production of selenoproteins such as GPX4, protects cells against ferroptosis. However, this activity also becomes a liability for cancer cells because selenide is poisonous and must be processed by SEPHS2. Accordingly, we find that SEPHS2 protein levels are elevated in samples from people with breast cancer, and that loss of SEPHS2 impairs growth of orthotopic mammary-tumour xenografts in mice. Collectively, our results identify a vulnerability of cancer cells and define the role of selenium metabolism in cancer.


Assuntos
Inativação Metabólica , Neoplasias/metabolismo , Selênio/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Ferroptose , Humanos , Camundongos , Camundongos Nus , Neoplasias/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfotransferases/metabolismo , Compostos de Selênio/metabolismo , Selenocisteína/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
PLoS One ; 8(6): e64260, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23785399

RESUMO

BACKGROUND: The effectiveness of molecular targeted agents is modest in hepatocellular carcinoma (HCC). Efficacy of molecular targeted therapies has been better in cancer patients with high expression of actionable molecules defined as cognate target molecules. However, patient stratification based on the actionable molecules dictating the effectiveness of targeted drugs has remained understudied in HCC. EXPERIMENTAL DESIGN & RESULTS: Paired tumor and non-tumoral tissues derived from a total of 130 HCC patients were studied. Real-time RT-PCR was used to analyze the mRNA expression of actionable molecules in the tissues. mRNA levels of EGFR, VEGFR2, PDGFRß, FGFR1, and mTOR were up-regulated in tumors compared to non-tumors in 35.4, 42.3, 61.5, 24.6, and 50.0% of patients, respectively. Up-regulation of EGFR was observed at early stage and tended to gradually decrease toward late stages (BCLC stage A: 41.9%; B: 30.8%; C: 17.6%). Frequency of VEGFR2 expression in tumors at stage C was lower than that in the other stages (BCLC stage A: 45.9%; B: 41.0%; C: 29.4%). PDGFRß and mTOR were observed to be up-regulated in more than 50% of tumors in all the stages whereas FGFR1 was up-regulated in only about 20% of HCC irrespective of stages. A cluster analysis of actionable gene expression revealed that HCC can be categorized into different subtypes that predict the effectiveness of molecular targeted agents and combination therapies in clinical trials. Analysis of in vitro sensitivity to sorafenib demonstrated that HCC cells with up-regulation of PDGFRß and c-Raf mRNA are more susceptible to sorafenib treatment in a dose and time-dependent manner than cells with low expression of the genes. CONCLUSIONS: mRNA expression analysis of actionable molecules could provide the rationale for new companion diagnostics-based therapeutic strategies in the treatment of HCC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hepáticas/genética , Terapia de Alvo Molecular , Transcriptoma , Adulto , Idoso , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Análise por Conglomerados , Feminino , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/genética , Sorafenibe
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA