Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Phytomedicine ; 104: 154318, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35830757

RESUMO

BACKGROUND: Terminalia chebula (TC) is a traditional medicinal plant used for treating various diseases in humans. However, pharmacological mechanisms underlying the effects of TC in atopic treatment remain unelucidated. HYPOTHESIS/PURPOSE: We investigated the therapeutic effects of TC extract in a mouse model of atopic dermatitis (AD) in vivo and the anti-inflammatory mechanism in vitro. STUDY DESIGN/METHODS: For the in vivo study, AD was induced by Dermatophagoides farinae extract (Dfe) in NC/Nga mice. After 14 days of oral administration, the effects of TC concentrations of 30, 100, and 300 mg/kg were analyzed by assessing morphological changes visually; measuring serum levels of inflammatory chemokines/cytokines, IgE, histamine, MDC, TARC, RANTES, and TSLP using ELISA kits; and counting infiltrated mast cells. For in vitro analyses, we used IFNγ/TNF-α-stimulated human keratinocyte cell lines to study the mechanism of action. The production of chemokines/cytokines in the IFNγ/TNF-α-stimulated HaCaT cells was measured using ELISA and a bead array kit. The signaling pathways were analyzed by western blotting and the expression of the transcriptional factors using RT-PCR and luciferase assay. RESULTS: Administration of TC significantly alleviated AD-like symptoms in vivo and decreased the ear thickness, dermatitis score, keratinization, and mast cell infiltration. It also resulted in decreased serum levels of IgE, histamine, and inflammation-related mediators MDC, TARC, RANTES, and TSLP compared with those in the Dfe treatment group. Moreover, TC downregulated the expression of the inflammatory chemokines RANTES and MDC in IFNγ/TNF-α-stimulated HaCaT cells. TC inhibited phosphorylated STAT1/3 and NK-κB subunits and nuclear translocation of NF-κB. It also suppressed the transcription of IFNγ, IL-6, IL-8 and MCP-1 in the IFNγ/TNF-α-stimulated HaCaT cells. TC and its constituents, chebulic acid, gallic acid, corlagin, chebulanin, chbulagic acid, ellagic acid, and chebulinic acid, strongly inhibited the nuclear translocation of NF-κB, STAT1, and STAT3 and decreased the expression of inflammatory cytokines at the mRNA level. CONCLUSIONS: Overall, TC extract alleviated AD-like symptoms by regulating anti-inflammatory factors in vivo and suppressing STAT1/3 and NF-κB signaling in vitro. In addition, our results show the in vivo effect of partial improvements in AD, as well as the in vitro effect on inflammatory factors by the constituents of TC. This finding provides that TC extract and its components could be potential therapeutic drugs for AD.


Assuntos
Dermatite Atópica , Terminalia , Animais , Anti-Inflamatórios/uso terapêutico , Quimiocina CCL5/metabolismo , Quimiocina CCL5/farmacologia , Quimiocina CCL5/uso terapêutico , Quimiocinas/metabolismo , Citocinas/metabolismo , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Histamina , Humanos , Imunoglobulina E , Queratinócitos , Camundongos , NF-kappa B/metabolismo , Extratos Vegetais/uso terapêutico , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3 , Fator de Necrose Tumoral alfa/metabolismo
2.
Mediators Inflamm ; 2022: 5985255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586367

RESUMO

The dried root of Angelica sinensis (A. sinensis) has been widely used in Chinese traditional medicine for various diseases such as inflammation, osteoarthritis, infections, mild anemia, fatigue, and high blood pressure. Searching for the secondary metabolites of A. sinensis has been mainly conducted. However, the bioactivity of coumarins in the plant remains unexplored. Therefore, this study was designed to evaluate the anti-inflammatory activity of glabralactone, a coumarin compound from A. sinensis, using in vitro and in vivo models, and to elucidate the underlying molecular mechanisms of action. Glabralactone effectively inhibited nitric oxide production in lipopolysaccharide- (LPS-) stimulated RAW264.7 macrophage cells. The downregulation of LPS-induced mRNA and protein expression of iNOS, TNF-α, IL-1ß, and miR-155 was found by glabralactone. The activation of NF-κB and TRIF-dependent IRF-3 pathway was also effectively suppressed by glabralactone in LPS-stimulated macrophages. Glabralactone (5 and 10 mg/kg) exhibited an in vivo anti-inflammatory activity with the reduction of paw edema volume in carrageenan-induced rat model, and the expressions of iNOS and IL-1ß proteins were suppressed by glabralactone in the paw soft tissues of the animal model. Taken together, glabralactone exhibited an anti-inflammatory activity in in vitro and in vivo models. These findings reveal that glabralactone might be one of the potential components for the anti-inflammatory activity of A. sinensis and may be prioritized in the development of a chemotherapeutic agent for the treatment of inflammatory diseases.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Angelica sinensis , Cumarínicos , Fator Regulador 3 de Interferon , NF-kappa B , Proteínas Adaptadoras de Transporte Vesicular/antagonistas & inibidores , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Angelica sinensis/química , Animais , Anti-Inflamatórios/farmacologia , Cumarínicos/farmacologia , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/metabolismo , Fator Regulador 3 de Interferon/antagonistas & inibidores , Fator Regulador 3 de Interferon/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Ratos , Transdução de Sinais/efeitos dos fármacos
3.
Phytomedicine ; 91: 153703, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34425473

RESUMO

BACKGROUND: Depressive-like behaviors are related to inflammatory immune activation. Cinnamomum verum (CV) has anti-inflammatory effects, but the molecular mechanisms underlying the antidepressant effects after immunological activation still remain elusive. PURPOSE: The aim of the present study was to investigate the effect of CV in improving depressive-like behavior and explore its underlying mechanism in T lymphocytes. METHODS: Mice were randomly divided into Control, LPS, LPS plus fluoxetine, LPS plus CV, and LPS plus MCA groups. Behavior was evaluated using forced swimming test (FST) and tail suspension test (TST). The experimental group mice were exposed to LPS to induce depressive-like behavior. Cell viability was measured upon treating splenic T lymphocytes and Jurkat T cells with CV. Cytokine activity was measured using ELISA and RT-qPCR. The components of CV were analyzed by HPLC. NFAT expression was evaluated by western blotting, immunofluorescence, and luciferase assay. To verify the half-life of NFAT mRNA, Jurkat cells were treated with actinomycin D for 1.5, 3, and 4.5 h. RESULTS: CV effectively prevents inflammation-induced depressive-like behaviors. CV dose-dependently decreased protein and mRNA levels of TNFα and IL-2. Inhibition of TNFα and IL-2 production involves an MCA-mediated decrease in NFAT mRNA level, rather than inhibition of nuclear translocation. This mechanism was independent of NFAT transcription inducer p38 MAPK; it can be attributed to the promotion of NFAT mRNA decay. CONCLUSION: Overall, MCA might be an alternative or adjuvant to existing NFAT-targeting immunosuppressants for clinical prophylaxis or therapy in the context of inflammation-induced depressive disorder or other T-cell-associated inflammatory disorders.


Assuntos
Acroleína/análogos & derivados , Cinnamomum zeylanicum , Depressão , Fatores de Transcrição NFATC , Estabilidade de RNA , Linfócitos T/efeitos dos fármacos , Acroleína/farmacologia , Animais , Comportamento Animal , Cinnamomum zeylanicum/química , Depressão/tratamento farmacológico , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos ICR
4.
Molecules ; 25(3)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041324

RESUMO

Aberrant activation of a Wnt/ß-catenin pathway results in nuclear accumulation of ß-catenin in colon cancer. Inhibiting ß-catenin is one strategy for treating colon cancer. Here, we identified Z-ajoene, a sulfur containing compound isolated from crushed garlic, as an inhibitor of colon cancer cell growth. Z-Ajoene repressed ß-catenin response transcriptional activity, intracellular ß-catenin levels, and its representative target protein levels (c-Myc and cyclin D1) in SW480 colon cancer cells. To clarify the regulatory mechanism of decreased ß-catenin levels, we examined the effect of Z-ajoene on ß-catenin phosphorylation, which is involved in ß-catenin degradation. Z-Ajoene promoted the phosphorylation of ß-catenin at Ser45 in a casein kinase 1α (CK1α)-dependent manner, which is an essential step in ß-catenin degradation in the cytosol. These findings indicate that Z-ajoene from garlic may be a potential chemotherapeutic agent by modulating CK1α activity and the Wnt/ß-catenin signaling pathway.


Assuntos
Antineoplásicos/farmacologia , Caseína Quinase Ialfa/metabolismo , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Dissulfetos/farmacologia , Fosforilação/efeitos dos fármacos , beta Catenina/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Ciclina D1/metabolismo , Alho/química , Células HEK293 , Humanos , Sulfóxidos , Via de Sinalização Wnt/efeitos dos fármacos
5.
Fitoterapia ; 142: 104486, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31987982

RESUMO

Inflammation is a very common and important basic pathological process. There is still a great need for the isolation of effective anti-inflammatory agents from plants. In this paper, five new isobutylamides, zanthoxylumamides E-I (1-5), and four known isobutylamides (6-9) were isolated from Zanthoxylum nitidum var. tomentosum (Rutaceae). Chiral resolution of seven racemic isobutylamides (1-4 and 6-8) was successfully performed, and the absolute configurations of two stereoisomers of 1-4 were validated by ECD and NMR. The obtained isobutylamides were evaluated in vitro anti-inflammatory activity with the lipopolysaccharide (LPS)-stimulated production of nitric oxide (NO) in murine macrophage RAW264.7 cells. Compound 8 exhibited significant inhibition of LPS-induced NO production. The underlying molecular mechanisms of the anti-inflammatory activity of 8 revealed that it suppressed the NO production through the modulation of myeloid differentiation factor 88 (MyD88) and interferon regulatory factor 3 (IRF3) signaling pathways.


Assuntos
Amidas/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Zanthoxylum/química , Amidas/química , Animais , Sobrevivência Celular , Lipopolissacarídeos/toxicidade , Camundongos , Modelos Moleculares , Estrutura Molecular , Óxido Nítrico/metabolismo , Células RAW 264.7
6.
J Photochem Photobiol B ; 202: 111704, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31743829

RESUMO

Ultraviolet B (UVB) induces inflammation and causes skin aging. The signs of skin aging, such as wrinkles, discolored spots, loss of skin moisture, and disruption of the skin barrier, are mostly caused by inflammatory signaling among various skin layers. The cells on the outermost surface of the skin are keratinocytes; these cells protect the skin against environmental stress and play an important role in immunomodulation by secreting cytokines in response to environmental stress. In the present study, we found that UVB activates STAT1 to mediate inflammatory signaling, yet STAT1 (S272) and STAT (Y702) shows different responses against UVB exposure. Anhua drak tea is a post-fermented dark tea produced in Anhua and Xinhua country in Hunan province of China. Treatment with 2S,3R-6-methoxycarbonylgallocatechin (MCGE), an epigallocatechin gallate derivative isolated from black tea (Anhua dark tea), effectively suppresses STAT1 activation and inflammatory cytokines, and activates Nrf2 pathway to protect cells from reactive oxygen species production in UVB exposed keratinocyte cells (HaCaT). Interestingly, the effects of MCGE were independent on MAPK signaling pathway. Moreover, MCGE regulates inflammatory cytokines in monocyte-keratinocyte (THP-1, HaCaT) co-culture and macrophage differentiation models. These results suggest that MCGE potentially can be used as a photoprotective agent against UVB-induced inflammatory responses.


Assuntos
Catequina/análogos & derivados , Catequina/farmacologia , Protetores contra Radiação/farmacologia , Transdução de Sinais/efeitos dos fármacos , Chá/química , Raios Ultravioleta , Sítios de Ligação , Catequina/química , Catequina/isolamento & purificação , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Técnicas de Cocultura , Citocinas/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos da radiação , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estrutura Terciária de Proteína , Protetores contra Radiação/química , Protetores contra Radiação/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT1/química , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/efeitos da radiação , Chá/metabolismo
7.
J Nat Prod ; 82(11): 3056-3064, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31668072

RESUMO

Three new germacrane sesquiterpenoid-type alkaloids with an unusual Δ8-7,12-lactam moiety, glechomanamides A-C (1-3), and two pairs of 7,12-hemiketal sesquiterpenoid epimers (4a/b, 5a/b) were isolated from Salvia scapiformis. Their structures were elucidated by spectroscopic methods including HRESIMS, IR, UV, and 1D and 2D NMR and also confirmed by single-crystal X-ray diffraction analysis. The chemical transformation of compounds 1-5 in a solution environment was analyzed by 2D NMR spectroscopy. The aza acetallactams (1-3) were stable in organic solvent, while single crystals of the hemiacetal esters (4a/b, 5a/b) underwent a tautomeric equilibrium after being dissolved. Single crystals of 4a, 4b, and 5a were obtained for the first time as their naturally occurring forms. Glechomanamide B (2) exhibited antiangiogenic activity by suppression of vascular endothelial growth factor (VEGF)-induced tube formation through modulation of VEGF receptor 2 (VEGFR2)-mediated signaling pathways in human umbilical vascular endothelial cells (HUVECs). In addition, compound 2 also showed the significant suppression of mRNA expression associated with glycolysis and angiogenesis biomarkers in high glucose (30 mM)-induced HUVECs. These findings suggest that compound 2 might be a potential lead compound candidate for the management of diabetic retinopathy.


Assuntos
Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Lactamas/química , Lactamas/farmacologia , Salvia/química , Sesquiterpenos de Germacrano/química , Sesquiterpenos de Germacrano/farmacologia , Retinopatia Diabética/tratamento farmacológico , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
8.
Cell Death Dis ; 10(5): 361, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043587

RESUMO

Acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) has been a major obstacle in the treatment of non-small cell lung cancer (NSCLC) patients. AXL has been reported to mediate EGFR-TKIs. Recently, third generation EGFR-TKI osimertinib has been approved and yet its acquired resistance mechanism is not clearly understood. We found that AXL is involved in both gefitinib and osimertinib resistance using in vitro and in vivo model. In addition, AXL overexpression was correlated with extended protein degradation rate. We demonstrate targeting AXL degradation is an alternative route to restore EGFR-TKIs sensitivity. We confirmed that the combination effect of YD, an AXL degrader, and EGFR-TKIs can delay or overcome EGFR-TKIs-driven resistance in EGFR-mutant NSCLC cells, xenograft tumors, and patient-derived xenograft (PDX) models. Therefore, combination of EGFR-TKI and AXL degrader is a potentially effective treatment strategy for overcoming and delaying acquired resistance in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Terpenos/farmacologia , Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Animais , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Medicamentos de Ervas Chinesas/farmacologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Gefitinibe/farmacologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos Nus , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl
9.
Mediators Inflamm ; 2018: 4514329, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29849490

RESUMO

Shinbaro3, a formulation derived from the hydrolysed roots of Harpagophytum procumbens var. sublobatum (Engl.) Stapf, has been clinically used in the pharamacopuncture treatment of arthritis in Korea. In the present study, Shinbaro3 inhibited NO generation in LPS-induced RAW 264.7 cells in a dose-dependent manner. Shinbaro3 also downregulated the mRNA and protein expression of inflammatory mediators in a dose-dependent manner. Three mechanisms explaining the effects of Shinbaro3 in RAW 264.7 cells were identified as follows: (1) inhibition of the extracellular signal-regulated kinase 1 and 2 (ERK1/2), stress-activated protein kinase (SAPK)/c-Jun N-terminal protein kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) pathways; (2) suppression of IκB kinase-α/ß (IKK-α/ß) phosphorylation and nuclear factor-kappa B (NF-κB) subunits in the NF-κB pathway, which are involved in MyD88-dependent signalling; and (3) downregulation of IFN-ß mRNA expression via inhibition of interferon regulatory factor 3 (IRF3) and Janus-activated kinase 1 (JAK1)/signal transducer and activator of transcription 1 (STAT1) phosphorylation, which is involved in TRIF-dependent signalling. Shinbaro3 exerted anti-inflammatory effects in LPS-stimulated RAW 264.7 macrophage cells through modulation of the TLR4/MyD88 pathways, suggesting that Shinbaro3 is a novel anti-inflammatory therapeutic candidate in the field of pharmacopuncture.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Harpagophytum/química , Lipopolissacarídeos/toxicidade , Extratos Vegetais/farmacologia , Receptor 4 Toll-Like/metabolismo , Animais , Fator Regulador 3 de Interferon/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/química , Células RAW 264.7 , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Molecules ; 23(6)2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29799492

RESUMO

LC/MS-based chemical profiling of a ginseng farm soil-derived actinomycete strain, Streptomyces sp. BYK1371, enabled the discovery of two new cyclic heptapeptides, depsidomycins B and C (1 and 2), each containing two piperazic acid units and a formyl group at their N-terminus. The structures of 1 and 2 were elucidated by a combination of spectroscopic and chemical analyses. These new compounds were determined to possess d-leucine, d-threonine, d-valine, and S-piperazic acid based on the advanced Marfey's method and a GITC (2,3,4,6-tetra-O-acetyl-ß-d-glucopyranosyl isothiocyanate) derivatization of their hydrolysates, followed by LC/MS analysis. Depsidomycins B and C displayed significant antimetastatic activities against metastatic breast cancer cells (MDA-MB-231).


Assuntos
Antineoplásicos/isolamento & purificação , Oligopeptídeos/isolamento & purificação , Microbiologia do Solo , Streptomyces/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Fazendas , Humanos , Isotiocianatos/química , Leucina/química , Leucina/isolamento & purificação , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Panax/crescimento & desenvolvimento , Piridazinas/química , Piridazinas/isolamento & purificação , Estereoisomerismo , Streptomyces/metabolismo , Treonina/química , Treonina/isolamento & purificação , Valina/química , Valina/isolamento & purificação
11.
Phytomedicine ; 34: 136-142, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28899495

RESUMO

BACKGROUND: Wnt/ß-catenin signaling pathway is a potential target for the treatment of human colon cancer. Thus, the inhibitory effects of various plant extracts on cell proliferation and Wnt signal transduction were evaluated to discover a Wnt signaling inhibitor. PURPOSE: The present study aimed to investigate the cytotoxicity involved in Wnt pathway of the MeOH extract from Telectadium dongnaiense bark (TDB) and to identify its bioactive constituents by bioassay-guided fractionation. METHODS: The sulforhodamine B-based proliferation assay and the ß-catenin/TCF-responsive reporter gene assay were employed as screening systems. The isolation and identification of compounds were elucidated on the basis of spectroscopic methods. Inhibitory effects on the expression levels of Wnt target genes were determined by real-time PCR and western blotting. RESULTS: The extract of TDB most strongly inhibited cell proliferation and TOPflash activity (IC50 = 1.5 and 2.0 µg/ml), which was correlated with its inhibitory effects on the expression of Wnt target genes. Three major compounds were isolated from bioactive fractions and were identified as 1,4-dicaffeoylquinic acid (1), quercetin 3-rutinoside (2), and periplocin (3). Only compound 3 showed anti-proliferative activity (IC50 = 0.06 µM) and exhibited Wnt signaling inhibitory effects in HCT116 colon cancer cells. CONCLUSIONS: This study contributes to understanding the cytotoxic properties of TDB extract and its constituents and provides a potent strategy for its further application.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apocynaceae/química , Extratos Vegetais/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Células HCT116 , Humanos , Casca de Planta/química , Transdução de Sinais/efeitos dos fármacos
12.
J Ethnopharmacol ; 209: 255-263, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28782620

RESUMO

ETHNOPHARMOCOLOGICAL RELEVANCE: Cortex Eucommiae (CE), the bark of Eucommia ulmoides Oliv., has been traditionally used for its kidney-tonifying and bone- and tendon-enhancing properties in Korea, China, and Japan. CE has been historically prescribed for inflammatory conditions such as arthritis of the knee and ankle. AIM OF THE STUDY: Although CE has recently been shown to suppress inflammation in scientific studies, whether this effect involves modulation of the toll-like receptor 4 (TLR-4) pathway is currently unknown. MATERIALS AND METHODS: The modulatory effect of CE on the TLR-4 pathway, both myeloid differentiation primary response gene 88 (Myd88)-dependent and independent, was investigated through real-time reverse transcriptase-polymerase chain reaction (RT-PCR), western blotting, and a reporter gene assay in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages. RESULTS: CE dose-dependently inhibited nitric oxide production without significant cytotoxicity with an IC50 of 356.23µg/mL. In addition, CE down-regulated both LPS-induced mRNA and protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) in a dose-dependent manner. CE suppressed LPS-induced activation of nuclear factor-κB (NF-κB) and the mitogen-activated protein kinase (MAPK) pathways, which together comprise the Myd88-dependent TLR-4 pathway. The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway was also down-regulated by CE in a dose-dependent manner. CE additionally suppressed LPS-induced activation of interferon-ß (IFN-ß) and signal transducer and activator of transcription (STAT) pathway, which is associated with the Myd88-independent TLR-4 pathway. CONCLUSIONS: CE down-regulated both Myd88-dependent and independent TLR-4 pathways, thus exerting anti-inflammatory effects. These results suggest that CE may be used as a potential therapeutic agent against chronic inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Eucommiaceae/química , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Óxido Nítrico , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7 , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Receptor 4 Toll-Like/genética
13.
PLoS One ; 11(12): e0168120, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27930719

RESUMO

BACKGROUND: Bee venom (BV), a type of toxin extracted from honeybees (Apis mellifera), has been empirically and widely used to treat inflammatory diseases throughout Asia. Essential BV (eBV) was developed by removing phospholipase A2 (PLA2) and histamine to lower occurrence of allergic reaction. This study investigated the anti-allergic and anti-inflammatory activities of eBV in vitro and in vivo and its underlying mechanism of action. METHODS: The anti-inflammatory potential of eBV was assessed in vivo using a carrageenan-induced paw edema model. To further investigate the mechanism by which eBV exerts anti-allergic and anti-inflammatory effects, compound 48/80-stimulated RBL-2H3 cells and lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage cells were studied in vitro. RESULTS: Release of ß-hexosaminidase and histamine was increased by eBV in a dose-dependent manner, but these levels were lower in eBV compared to original BV at the same concentration. In addition, eBV suppressed compound 48/80-induced expression of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) in RBL-2H3 cells. eBV was also shown to suppress nitric oxide (NO) production by down-regulating mRNA expression and subsequent protein expression of inflammatory mediators in LPS-induced RAW 264.7 cells. Phosphorylation of activators and signal transducers of transcription 1/interferon regulatory factor 3 (STAT1/IRF3) was attenuated by eBV treatment. eBV significantly inhibited carrageenan-induced acute edema in vivo. Serum levels of prostaglandin E2 (PGE2), TNF-α, and IL-1ß were also down-regulated by eBV. CONCLUSIONS: These results demonstrate that eBV inhibits allergic and inflammatory response by reducing inflammatory mediator production via regulation of the STAT1/IRF3 signaling pathway, suggesting that eBV is a feasible candidate for regulation of allergic-inflammatory response in complementary and alternative medicine.


Assuntos
Venenos de Abelha/uso terapêutico , Edema/tratamento farmacológico , Hipersensibilidade/tratamento farmacológico , Inflamação/tratamento farmacológico , Fator Regulador 3 de Interferon/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Western Blotting , Carragenina/farmacologia , Cromatografia Líquida de Alta Pressão , Dinoprostona/metabolismo , Modelos Animais de Doenças , Edema/induzido quimicamente , Histamina/metabolismo , Interleucina-4/metabolismo , Masculino , Camundongos , Células RAW 264.7/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT1/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
14.
Phytomedicine ; 23(2): 95-104, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26926170

RESUMO

BACKGROUND: The bulb of Fritillaria thunbergii has been utilised as mucoregulators and expectorants for controlling the airway inflammatory diseases in folk medicine. HYPOTHESIS/PURPOSE: We investigated whether verticine, ebeiedine and suchengbeisine isolated from the bulbs of Fritillaria thunbergii inhibit the gene expression and production of MUC5AC mucin from human airway epithelial cells. STUDY DESIGN: Confluent NCI-H292 cells were pretreated with verticine, ebeiedine or suchengbeisine for 30 min and then stimulated with EGF, PMA or TNF-α for 24h. The MUC5AC mucin gene expression was measured by RT-PCR. Production of MUC5AC mucin protein was measured by ELISA. RESULTS: (1) Verticine, ebeiedine or suchengbeisine inhibited the expression of MUC5AC mucin gene induced by EGF, PMA or TNF-α; (2) The production of MUC5AC mucin protein induced by EGF, PMA or TNF-α were also inhibited by treatment of verticine, ebeiedine or suchengbeisine. CONCLUSION: These results suggest that verticine, ebeiedine and suchengbeisine isolated from the bulbs of Fritillaria thunbergii inhibit the gene expression and production of MUC5AC mucin, by directly acting on airway epithelial cells, and the results are consistent with the traditional use of Fritillaria thunbergii as remedy for diverse inflammatory pulmonary diseases.


Assuntos
Alcaloides/química , Cevanas/química , Células Epiteliais/efeitos dos fármacos , Fritillaria/química , Mucina-5AC/metabolismo , Esteroides/química , Alcaloides/isolamento & purificação , Linhagem Celular Tumoral , Cevanas/isolamento & purificação , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Estrutura Molecular , Mucina-5AC/genética , Extratos Vegetais/química , Raízes de Plantas/química , Esteroides/isolamento & purificação , Fator de Necrose Tumoral alfa/farmacologia
16.
Invest New Drugs ; 34(1): 1-14, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26581399

RESUMO

Arsenic compounds have been used in traditional medicine for several centuries. KML001 (sodium metaarsenite; NaAsO2) is an orally bio-available arsenic compound with potential anti-cancer activity. However, the effect of KML001 has not been studied in lymphoid neoplasms. The aim of this study is to evaluate the anti-proliferative effect of KML001 in non-Hodgkin's lymphoma and to compare its efficacy with As2O3. KML001 inhibited cellular proliferation in all tested lymphoma cell lines as well as JurkatR cells (adriamycin-resistant Jurkat cells) in a dose-dependent manner, while As2O3 was not effective. Cell cycle regulatory protein studies have suggested that KML001 induces G1 arrest via p27-induced inhibition of the kinase activities of CDK2, 4, and 6. Treatment of KML001 induced apoptosis in Jurkat and JurkatR cells. The apoptotic process was associated with down-regulation of Bcl-2 (antiapoptotic molecule), up-regulation of Bax (proapoptotic molecule), and inhibition of caspase-3, -8, and -9. In addition, cell signaling including the STAT, PI3K/Akt, MAPK, and NF-κB signal pathways were inhibited in KML001-treated Jurkat and JurkatR cells. Furthermore, targeting the telomere by KML001 was observed in the Jurkat and JurkatR cells. The In vivo anti-tumoral activity of KML001 was confirmed in a xenograft murine model. Interestingly, partial responses were seen in two lymphoma patients treated with 10 mg/day (follicular lymphoma for 16 weeks and mantle cell lymphoma for 24 weeks) without severe toxicities. These findings suggest that KML001 may be a candidate agent for the treatment of de novo, refractory, and relapsed non-Hodgkin's lymphoma patients.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Arsenitos/farmacologia , Linfoma não Hodgkin/tratamento farmacológico , Compostos de Sódio/farmacologia , Idoso , Animais , Antineoplásicos/administração & dosagem , Trióxido de Arsênio , Arsenicais/farmacologia , Arsenitos/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Células Jurkat , Linfoma não Hodgkin/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Óxidos/farmacologia , Projetos Piloto , Transdução de Sinais/efeitos dos fármacos , Compostos de Sódio/administração & dosagem , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Artigo em Inglês | MEDLINE | ID: mdl-26379748

RESUMO

The present study was designed to find pharmacologically active compound against airway inflammation from the roots of Asparagus cochinchinensis. The 70% ethanol extract of the roots of A. cochinchinensis (ACE) was found to inhibit IL-6 production from IL-1ß-treated lung epithelial cells (A549) and the major constituent, methyl protodioscin (MP), also strongly inhibited the production of IL-6, IL-8, and tumor necrosis factor- (TNF-) α from A549 cells at 10-100 µM. This downregulating effect of proinflammatory cytokine production was found to be mediated, at least in part, via inhibition of c-Jun N-terminal kinase (JNK) and c-Jun activation pathway. When examined on an in vivo model of airway inflammation in mice, lipopolysaccharide- (LPS-) induced acute lung injury, ACE, and MP significantly inhibited cell infiltration in the bronchoalveolar lavage fluid by the oral treatment at doses of 100-400 mg/kg and 30-60 mg/kg, respectively. MP also inhibited the production of proinflammatory cytokines such as IL-6, TNF-α, and IL-1ß in lung tissue. All of these findings provide scientific evidence supporting the role of A. cochinchinensis as a herbal remedy in treating airway inflammation and also suggest a therapeutic value of MP on airway inflammatory disorders.

18.
Tuberc Respir Dis (Seoul) ; 78(3): 210-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26175774

RESUMO

BACKGROUND: Adenophora triphylla var. japonica is empirically used for controlling airway inflammatory diseases in folk medicine. We evaluated the gene expression and production of mucin from airway epithelial cells in response to lupenone, lupeol and taraxerol derived from Adenophora triphylla var. japonica. METHODS: Confluent NCI-H292 cells were pretreated with lupenone, lupeol or taraxerol for 30 minutes and then stimulated with tumor necrosis factor α (TNF-α) for 24 hours. The MUC5AC mucin gene expression and production were measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Additionally, we examined whether lupenone, lupeol or taraxerol affects MUC5AC mucin production induced by epidermal growth factor (EGF) and phorbol 12-myristate 13-acetate (PMA), the other 2 stimulators of airway mucin production. RESULTS: Lupenone, lupeol, and taraxerol inhibited the gene expression and production of MUC5AC mucin induced by TNF-α from NCI-H292 cells, respectively. The 3 compounds inhibited the EGF or PMA-induced production of MUC5AC mucin in NCI-H292 cells. CONCLUSION: These results indicated that lupenone, lupeol and taraxerol derived from Adenophora triphylla var. japonica regulates the production and gene expression of mucin, by directly acting on airway epithelial cells. In addition, the results partly explain the mechanism of of Adenophora triphylla var. japonica as a traditional remedy for diverse inflammatory pulmonary diseases.

19.
Phytomedicine ; 22(5): 568-72, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25981923

RESUMO

BACKGROUND: The root of Asparagus cochinchinensis (Lour.) Merr. has been utilized as mucoregulators and expectorants for controlling the airway inflammatory diseases in folk medicine. HYPOTHESIS/PURPOSE: We investigated whether dioscin and methylprotodioscin isolated from the root of Asparagus cochinchinensis (Lour.) Merr. suppress the gene expression and production of airway MUC5AC mucin induced by phorbol ester and growth factor. STUDY DESIGN: Confluent NCI-H292 cells were pretreated with dioscin or methylprotodioscin for 30 min and then stimulated with EGF or PMA for 24 h. The MUC5AC mucin gene expression was measured by RT-PCR. Production of MUC5AC mucin protein was measured by ELISA. RESULTS: (1) Dioscin and methylprotodioscin suppressed the expression of MUC5AC mucin gene induced by EGF or PMA; (2) dioscin suppressed the production of MUC5AC mucin induced by either EGF at 10(-5) M (p < 0.05) and 10(-6) M (p < 0.05) or PMA at 10(-4) M (p < 0.05), 10(-5) M (p < 0.05) and 10(-6) M (p < 0.05); (3) methylprotodioscin also suppressed the production of MUC5AC mucin induced by either EGF at 10(-4) M (p < 0.05) or PMA at 10(-4) M (p < 0.05). CONCLUSION: These results suggest that dioscin and methylprotodioscin isolated from the root of Asparagus cochinchinensis suppress the gene expression and production of MUC5AC mucin, by directly acting on airway epithelial cells, and the results are consistent with the traditional use of Asparagus cochinchinensis as remedy for diverse inflammatory pulmonary diseases.


Assuntos
Asparagus/química , Diosgenina/análogos & derivados , Mucina-5AC/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Diosgenina/farmacologia , Fator de Crescimento Epidérmico , Regulação Neoplásica da Expressão Gênica , Humanos , Raízes de Plantas/química , Saponinas , Acetato de Tetradecanoilforbol
20.
Tuberc Respir Dis (Seoul) ; 77(2): 65-72, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25237377

RESUMO

BACKGROUND: It is valuable to find the potential activity of regulating the excessive mucin secretion by the compounds derived from various medicinal plants. We investigated whether aqueous extract of the root bark of Morus alba L. (AMA), kuwanon E, kuwanon G, mulberrofuran G, and morusin significantly affect the secretion and production of airway mucin using in vivo and in vitro experimental models. METHODS: Effect of AMA was examined on hypersecretion of airway mucin in sulfur dioxide-induced acute bronchitis in rats. Confluent NCI-H292 cells were pretreated with ethanolic extract, kuwanon E, kuwanon G, mulberrofuran G, or morusin for 30 minutes and then stimulated with phorbol 12-myristate 13-acetate (PMA) for 24 hours. The MUC5AC mucin secretion and production were measured by enzyme-linked immunosorbent assay. RESULTS: AMA stimulated the secretion of airway mucin in sulfur dioxide-induced bronchitis rat model; aqueous extract, ethanolic extract, kuwanon E, kuwanon G, mulberrofuran G and morusin inhibited the production of MUC5AC mucin induced by PMA from NCI-H292 cells, respectively. CONCLUSION: These results suggest that extract of the root bark and the natural products derived from Morus alba L. can regulate the secretion and production of airway mucin and, at least in part, explains the folk use of extract of Morus alba L. as mucoregulators in diverse inflammatory pulmonary diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA