Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1183406, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469771

RESUMO

The family Schisandraceae is a basal angiosperm plant group distributed in East and Southeast Asia and includes many medicinal plant species such as Schisandra chinensis. In this study, mitochondrial genomes (mitogenomes) of two species, Schisandra repanda and Kadsura japonica, in the family were characterized through de novo assembly using sequencing data obtained with Oxford Nanopore and Illumina sequencing technologies. The mitogenomes of S. repanda were assembled into one circular contig (571,107 bp) and four linear contigs (10,898-607,430 bp), with a total of 60 genes: 38 protein-coding genes (PCGs), 19 tRNA genes, and 3 rRNA genes. The mitogenomes of K. japonica were assembled into five circular contigs (211,474-973,503 bp) and three linear contigs (8,010-72,712 bp), with a total of 66 genes: 44 PCGs, 19 tRNA genes, and 3 rRNA genes. The mitogenomes of the two species had complex structural features with high repeat numbers and chloroplast-derived sequences, as observed in other plant mitogenomes. Phylogenetic analysis based on PCGs revealed the taxonomical relationships of S. repanda and K. japonica with other species from Schisandraceae. Finally, molecular markers were developed to distinguish between S. repanda, K. japonica, and S. chinensis on the basis of InDel polymorphisms present in the mitogenomes. The mitogenomes of S. repanda and K. japonica will be valuable resources for molecular and taxonomic studies of plant species that belong to the family Schisandraceae.

2.
Sci Rep ; 12(1): 8659, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606486

RESUMO

Interspecific somatic hybridization has been performed in potato breeding experiments to increase plant resistance against biotic and abiotic stress conditions. We analyzed the mitochondrial and plastid genomes and 45S nuclear ribosomal DNA (45S rDNA) for the cultivated potato (S. tuberosum, St), wild potato (S. commersonii, Sc), and their somatic hybrid (StSc). Complex genome components and structure, such as the hybrid form of 45S rDNA in StSc, unique plastome in Sc, and recombinant mitogenome were identified. However, the mitogenome exhibited dynamic multipartite structures in both species as well as in the somatic hybrid. In St, the mitogenome is 756,058 bp and is composed of five subgenomes ranging from 297,014 to 49,171 bp. In Sc, it is 552,103 bp long and is composed of two sub-genomes of 338,427 and 213,676 bp length. StSc has 447,645 bp long mitogenome with two subgenomes of length 398,439 and 49,206 bp. The mitogenome structure exhibited dynamic recombination mediated by tandem repeats; however, it contained highly conserved genes in the three species. Among the 35 protein-coding genes of the StSc mitogenome, 21 were identical for all the three species, and 12 and 2 were unique in Sc and St, respectively. The recombinant mitogenome might be derived from homologous recombination between both species during somatic hybrid development.


Assuntos
Genoma Mitocondrial , Solanum tuberosum , Solanum , DNA Ribossômico , Genoma Mitocondrial/genética , Hibridização Genética , Melhoramento Vegetal , Solanum/genética , Solanum tuberosum/genética
3.
J Ginseng Res ; 43(4): 572-579, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31700259

RESUMO

BACKGROUND: Panax ginseng has been used in traditional medicine to strengthen the body and mental well-being of humans for thousands of years. Many elite ginseng cultivars have been developed, and ginseng cultivation has become well established during the last century. However, heat stress poses an important threat to the growth and sustainable production of ginseng. Efforts have been made to study the effects of high temperature on ginseng physiology, but knowledge of the molecular responses to heat stress is still limited. METHODS: We sequenced the transcriptomes (RNA-Seq) of two ginseng cultivars, Chunpoong (CP) and Yunpoong (YP), which are sensitive and resistant to heat stress, respectively, after 1- and 3-week heat treatments. Differential gene expression and gene ontology enrichment along with profiled chlorophyll contents were performed. RESULTS: CP is more sensitive to heat stress than YP and exhibited a lower chlorophyll content than YP. Moreover, heat stress reduced the chlorophyll content more rapidly in CP than in YP. A total of 329 heat-responsive genes were identified. Intriguingly, genes encoding chlorophyll a/b-binding proteins, WRKY transcription factors, and fatty acid desaturase were predominantly responsive during heat stress and appeared to regulate photosynthesis. In addition, a genome-wide scan of photosynthetic and sugar metabolic genes revealed reduced transcription levels for ribulose 1,5-bisphosphate carboxylase/oxygenase under heat stress, especially in CP, possibly attributable to elevated levels of soluble sugars. CONCLUSION: Our comprehensive genomic analysis reveals candidate loci/gene targets for breeding and functional studies related to developing high temperature-tolerant ginseng varieties.

4.
Int J Mol Sci ; 20(9)2019 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-31060231

RESUMO

Three Apiaceae species Ledebouriella seseloides, Peucedanum japonicum, and Glehnia littoralis are used as Asian herbal medicines, with the confusingly similar common name "Bang-poong". We characterized the complete chloroplast (cp) genomes and 45S nuclear ribosomal DNA (45S nrDNA) sequences of two accessions for each species. The complete cp genomes of G. littoralis, L. seseloides, and P. japonicum were 147,467, 147,830, and 164,633 bp, respectively. Compared to the other species, the P. japonicum cp genome had a huge inverted repeat expansion and a segmental inversion. The 45S nrDNA cistron sequences of the three species were almost identical in size and structure. Despite the structural variation in the P. japonicum cp genome, phylogenetic analysis revealed that G. littoralis diverged 5-6 million years ago (Mya), while P. japonicum diverged from L. seseloides only 2-3 Mya. Abundant copy number variations including tandem repeats, insertion/deletions, and single nucleotide polymorphisms, were found at the interspecies level. Intraspecies-level polymorphism was also found for L. seseloides and G. littoralis. We developed nine PCR barcode markers to authenticate all three species. This study characterizes the genomic differences between L. seseloides, P. japonicum, and G. littoralis; provides a method of species identification; and sheds light on the evolutionary history of these three species.


Assuntos
Apiaceae/classificação , Apiaceae/genética , Código de Barras de DNA Taxonômico , Rearranjo Gênico , Genoma de Cloroplastos , Plantas Medicinais/classificação , Plantas Medicinais/genética , Cloroplastos/genética , Variações do Número de Cópias de DNA , Genômica/métodos , Mutação , Fases de Leitura Aberta , Filogenia , RNA Ribossômico/genética , Análise de Sequência de DNA , Sequências de Repetição em Tandem
5.
Genes (Basel) ; 9(8)2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061537

RESUMO

Platycodongrandiflorus (balloon flower) and Codonopsislanceolata (bonnet bellflower) are important herbs used in Asian traditional medicine, and both belong to the botanical family Campanulaceae. In this study, we designed and implemented a de novo DNA sequencing and assembly strategy to map the complete mitochondrial genomes of the first two members of the Campanulaceae using low-coverage Illumina DNA sequencing data. We produced a total of 28.9 Gb of paired-end sequencing data from the genomic DNA of P.grandiflorus (20.9 Gb) and C.lanceolata (8.0 Gb). The assembled mitochondrial genome of P.grandiflorus was found to consist of two circular chromosomes; the master circle contains 56 genes, and the minor circle contains 42 genes. The C.lanceolata mitochondrial genome consists of a single circle harboring 54 genes. Using a comparative genome structure and a pattern of repeated sequences, we show that the P.grandiflorus minor circle resulted from a recombination event involving the direct repeats of the master circle. Our dataset will be useful for comparative genomics and for evolutionary studies, and will facilitate further biological and phylogenetic characterization of species in the Campanulaceae.

6.
BMC Plant Biol ; 18(1): 62, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29649979

RESUMO

BACKGROUND: The ginseng (Panax ginseng C.A. Meyer) is a perennial herbaceous plant that has been used in traditional oriental medicine for thousands of years. Ginsenosides, which have significant pharmacological effects on human health, are the foremost bioactive constituents in this plant. Having realized the importance of this plant to humans, an integrated omics resource becomes indispensable to facilitate genomic research, molecular breeding and pharmacological study of this herb. DESCRIPTION: The first draft genome sequences of P. ginseng cultivar "Chunpoong" were reported recently. Here, using the draft genome, transcriptome, and functional annotation datasets of P. ginseng, we have constructed the Ginseng Genome Database http://ginsengdb.snu.ac.kr /, the first open-access platform to provide comprehensive genomic resources of P. ginseng. The current version of this database provides the most up-to-date draft genome sequence (of approximately 3000 Mbp of scaffold sequences) along with the structural and functional annotations for 59,352 genes and digital expression of genes based on transcriptome data from different tissues, growth stages and treatments. In addition, tools for visualization and the genomic data from various analyses are provided. All data in the database were manually curated and integrated within a user-friendly query page. CONCLUSION: This database provides valuable resources for a range of research fields related to P. ginseng and other species belonging to the Apiales order as well as for plant research communities in general. Ginseng genome database can be accessed at http://ginsengdb.snu.ac.kr /.


Assuntos
Genoma de Planta/genética , Panax/genética , Panax/metabolismo , Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Ontologia Genética , Ginsenosídeos/metabolismo
7.
Plant Biotechnol J ; 16(11): 1904-1917, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29604169

RESUMO

Panax ginseng C. A. Meyer, reputed as the king of medicinal herbs, has slow growth, long generation time, low seed production and complicated genome structure that hamper its study. Here, we unveil the genomic architecture of tetraploid P. ginseng by de novo genome assembly, representing 2.98 Gbp with 59 352 annotated genes. Resequencing data indicated that diploid Panax species diverged in association with global warming in Southern Asia, and two North American species evolved via two intercontinental migrations. Two whole genome duplications (WGD) occurred in the family Araliaceae (including Panax) after divergence with the Apiaceae, the more recent one contributing to the ability of P. ginseng to overwinter, enabling it to spread broadly through the Northern Hemisphere. Functional and evolutionary analyses suggest that production of pharmacologically important dammarane-type ginsenosides originated in Panax and are produced largely in shoot tissues and transported to roots; that newly evolved P. ginseng fatty acid desaturases increase freezing tolerance; and that unprecedented retention of chlorophyll a/b binding protein genes enables efficient photosynthesis under low light. A genome-scale metabolic network provides a holistic view of Panax ginsenoside biosynthesis. This study provides valuable resources for improving medicinal values of ginseng either through genomics-assisted breeding or metabolic engineering.


Assuntos
Genoma de Planta/genética , Panax/genética , Adaptação Biológica/genética , Evolução Biológica , Diploide , Genes de Cloroplastos/genética , Genes de Plantas/genética , Ginsenosídeos/biossíntese , Panax/metabolismo , Tetraploidia
8.
Mitochondrial DNA B Resour ; 3(1): 118-119, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33474088

RESUMO

Asarum sieboldii is a medicinal plant belonging to the Aristolochiaceae family. In this study, complete chloroplast genome sequence of A. sieboldii was characterized through de novo assembly with next generation sequencing data. The chloroplast genome is 193,356 bp long and has the stereotypical tripartite organization consisting of large single copy region and a pair of inverted repeats. The genome contains 78 protein-coding genes, 30 rRNA genes, and 4 tRNA genes. Phylogenetic analysis revealed that A. sieboldii has close relationship with Piper coenoclatum (Piperaceae, Piperales).

9.
Mitochondrial DNA B Resour ; 3(2): 980-981, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33490553

RESUMO

Coix lacryma-jobi is a cereal and medicinal crop belonging to the Poaceae family. This study characterized complete chloroplast genome sequence of a Korean cultivar Johyun of C. lacryma-jobi var. ma-yuen through the de novo hybrid assembly with Illumina and PacBio genomic reads. The chloroplast genome is 140,863 bp long and composed of large single copy (82,827 bp), small single copy (12,522 bp), and a pair of inverted repeats (each 22,757 bp). A total of 123 genes including 87 protein-coding genes, 32 tRNA genes, and four rRNA genes were predicted in the genome. Phylogenetic analysis confirmed a close relationship of C. lacryma-jobi with species in the Panicoideae subfamily of the Poaceae family.

10.
Sci Rep ; 7(1): 9045, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831052

RESUMO

Genome duplication and repeat multiplication contribute to genome evolution in plants. Our previous work identified a recent allotetraploidization event and five high-copy LTR retrotransposon (LTR-RT) families PgDel, PgTat, PgAthila, PgTork, and PgOryco in Panax ginseng. Here, using whole-genome sequences, we quantified major repeats in five Panax species and investigated their role in genome evolution. The diploids P. japonicus, P. vietnamensis, and P. notoginseng and the tetraploids P. ginseng and P. quinquefolius were analyzed alongside their relative Aralia elata. These species possess 0.8-4.9 Gb haploid genomes. The PgDel, PgTat, PgAthila, and PgTork LTR-RT superfamilies accounted for 39-52% of the Panax species genomes and 17% of the A. elata genome. PgDel included six subfamily members, each with a distinct genome distribution. In particular, the PgDel1 subfamily occupied 23-35% of the Panax genomes and accounted for much of their genome size variation. PgDel1 occupied 22.6% (0.8 Gb of 3.6 Gb) and 34.5% (1.7 Gb of 4.9 Gb) of the P. ginseng and P. quinquefolius genomes, respectively. Our findings indicate that the P. quinquefolius genome may have expanded due to rapid PgDel1 amplification over the last million years as a result of environmental adaptation following migration from Asia to North America.


Assuntos
Tamanho do Genoma , Genoma de Planta , Genômica , Panax/classificação , Panax/genética , Retroelementos , Mapeamento Cromossômico , Variação Genética , Genômica/métodos , Família Multigênica , Sequências Repetitivas de Ácido Nucleico , Sequenciamento Completo do Genoma
11.
J Ginseng Res ; 41(3): 403-410, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28701884

RESUMO

BACKGROUND: Prenyltransferases catalyze the sequential addition of isopentenyl diphosphate units to allylic prenyl diphosphate acceptors and are classified as either trans-prenyltransferases (TPTs) or cis-prenyltransferases (CPTs). The functions of CPTs have been well characterized in bacteria, yeast, and mammals compared to plants. The characterization of CPTs also has been less studied than TPTs. In the present study, molecular cloning and functional characterization of a CPT from a medicinal plant, Panax ginseng Mayer were addressed. METHODS: Gene expression patterns of PgCPT1 were analyzed by quantitative reverse transcription polymerase chain reaction. In planta transformation was generated by floral dipping using Agrobacterium tumefaciens. Yeast transformation was performed by lithium acetate and heat-shock for rer2Δ complementation and yeast-two-hybrid assay. RESULTS: The ginseng genome contains at least one family of three putative CPT genes. PgCPT1 is expressed in all organs, but more predominantly in the leaves. Overexpression of PgCPT1 did not show any plant growth defect, and its protein can complement yeast mutant rer2Δ via possible protein-protein interaction with PgCPTL2. CONCLUSION: Partial complementation of the yeast dolichol biosynthesis mutant rer2Δ suggested that PgCPT1 is involved in dolichol biosynthesis. Direct protein interaction between PgCPT1 and a human Nogo-B receptor homolog suggests that PgCPT1 requires an accessory component for proper function.

12.
Front Plant Sci ; 8: 1048, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28674547

RESUMO

Panax ginseng C.A. Meyer is a traditional medicinal herb that produces bioactive compounds such as ginsenosides. Here, we investigated the diversity of ginsenosides and related genes among five genetically fixed inbred ginseng cultivars (Chunpoong [CP], Cheongsun [CS], Gopoong [GO], Sunhyang [SH], and Sunun [SU]). To focus on the genetic diversity related to ginsenoside biosynthesis, we utilized in vitro cultured adventitious roots from the five cultivars grown under controlled environmental conditions. PCA loading plots based on secondary metabolite composition classified the five cultivars into three groups. We selected three cultivars (CS, SH, and SU) to represent the three groups and conducted further transcriptome and gas chromatography-mass spectrometry analyses to identify genes and intermediates corresponding to the variation in ginsenosides among cultivars. We quantified ginsenoside contents from the three cultivars. SH had more than 12 times the total ginsenoside content of CS, with especially large differences in the levels of panaxadiol-type ginsenosides. The expression levels of genes encoding squalene epoxidase (SQE) and dammarenediol synthase (DDS) were also significantly lower in CS than SH and SU, which is consistent with the low levels of ginsenoside produced in this cultivar. Methyl jasmonate (MeJA) treatment increased the levels of panaxadiol-type ginsenosides up to 4-, 13-, and 31-fold in SH, SU, and CS, respectively. MeJA treatment also greatly increased the quantity of major intermediates and the expression of the underlying genes in the ginsenoside biosynthesis pathway; these intermediates included squalene, 2,3-oxidosqualene, and dammarenediol II, especially in CS, which had the lowest ginsenoside content under normal culture conditions. We conclude that SQE and DDS are the most important genetic factors for ginsenoside biosynthesis with diversity among ginseng cultivars.

13.
Sci Rep ; 7(1): 4917, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28687778

RESUMO

We produced complete sequences and conducted comparative analysis of the maternally inherited chloroplast (cp) genomes and bi-parentally inherited 45S nuclear ribosomal RNA genes (nrDNA) from ten Araliaceae species to elucidate the genetic diversity and evolution in that family. The cp genomes ranged from 155,993 bp to 156,730 bp with 97.1-99.6% similarity. Complete 45S nrDNA units were about 11 kb including a 5.8-kb 45S cistron. Among 79 cp protein-coding genes, 74 showed nucleotide variations among ten species, of which infA, rpl22, rps19 and ndhE genes showed the highest Ks values and atpF, atpE, ycf2 and rps15 genes showed the highest Ka/Ks values. Four genes, petN, psaJ, psbF, and psbN, related to photosynthesis and one gene, rpl23, related to the ribosomal large subunit remain conserved in all 10 Araliaceae species. Phylogenetic analysis revealed that the ten species could be resolved into two monophyletic lineages, the Panax-Aralia and the Eleutherococcus-Dendropanax groups, which diverged approximately 8.81-10.59 million years ago (MYA). The Panax genus divided into two groups, with diploid species including P. notoginseng, P. vietnamensis, and P. japonicus surviving in Southern Asia and a tetraploid group including P. ginseng and P. quinquefolius Northern Asia and North America 2.89-3.20 MYA.


Assuntos
Araliaceae/genética , Evolução Biológica , Cloroplastos/genética , Genoma de Cloroplastos , Panax/genética , RNA Ribossômico/genética , Araliaceae/classificação , Ásia , Mapeamento Cromossômico , Sequência Conservada , Variação Genética , Tamanho do Genoma , América do Norte , Panax/classificação , Filogenia , RNA Nuclear/genética , Sequenciamento Completo do Genoma
14.
J Agric Food Chem ; 65(30): 6298-6306, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28530408

RESUMO

Ginseng represents a set of high-value medicinal plants of different species: Panax ginseng (Asian ginseng), Panax quinquefolius (American ginseng), Panax notoginseng (Chinese ginseng), Panax japonicus (Bamboo ginseng), and Panax vietnamensis (Vietnamese ginseng). Each species is pharmacologically and economically important, with differences in efficacy and price. Accordingly, an authentication system is needed to combat economically motivated adulteration of Panax products. We conducted comparative analysis of the chloroplast genome sequences of these five species, identifying 34-124 InDels and 141-560 SNPs. Fourteen InDel markers were developed to authenticate the Panax species. Among these, eight were species-unique markers that successfully differentiated one species from the others. We generated at least one species-unique marker for each of the five species, and any of the species can be authenticated by selection among these markers. The markers are reliable, easily detectable, and valuable for applications in the ginseng industry as well as in related research.


Assuntos
Genoma de Cloroplastos , Panax/genética , Marcadores Genéticos , Panax/classificação , Proteínas de Plantas/genética , Raízes de Plantas/classificação , Raízes de Plantas/genética , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie
15.
Artigo em Inglês | MEDLINE | ID: mdl-26710166

RESUMO

The complete chloroplast genome sequence of Panax vietnamensis, a medicinal herb belonging to Araliaceae family, was generated by de novo assembly using whole genome next-generation sequences. The chloroplast genome was a circular form of 155 992 bp long and showed typical chloroplast genome structure consisting of a large single-copy region of 86 177 bp, a small single copy region of 17 935 bp and a pair of inverted repeats of 25 940 bp. The chloroplast genome had 79 protein-coding genes, 29 tRNA genes and 4 rRNA genes. The phylogenetic analysis with the reported chloroplast genomes revealed that four Panax species were grouped in the same clade and P. vietnamensis is more closely related to P. notoginseng than P. ginseng and P. quinquefolius.


Assuntos
Genes de Cloroplastos , Genoma de Cloroplastos , Panax/genética , Filogenia , Sequência de Bases , DNA de Cloroplastos , Tamanho do Genoma , Genoma de Planta , Genômica , Análise de Sequência de DNA
16.
Int J Antimicrob Agents ; 48(3): 247-58, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27451857

RESUMO

Mycobacterium tuberculosis acetohydroxyacid synthase (MTB-AHAS) has been suggested as a crucial target for antibacterial agents. High-throughput screening of a chemical library was performed to identify potent new inhibitors of MTB-AHAS. Among the 6800 tested compounds, 15 were identified as potent inhibitors, exhibiting >80-90% inhibition of in vitro MTB-AHAS activity at a fixed concentration of 20 µM. Five compounds belonging to the triazolopyrimidine structural class showed greater inhibition potency, with a half-maximum inhibition concentration (IC50 value) in the low micromolar range (0.4-1.24 µM). Furthermore, potent inhibitors demonstrated non-competitive, uncompetitive or mixed-competitive inhibition. Molecular docking experiments with these potent chemicals using a homology model of MTB-AHAS indicated hydrophobic and hydrogen bond interactions with some key herbicide binding site residues with binding energies (ΔG) of -8.04 to -10.68 Kcal/mol, respectively. The binding modes were consistent with inhibition mechanisms, as the chemicals were oriented outside the active site. Importantly, these potent inhibitors demonstrated significant growth inhibition of various clinically isolated multidrug-resistant and extensively drug-resistant M. tuberculosis strains, with 50% minimum inhibitory concentrations (MIC50 values) ranging from 0.2 µg/mL to 0.8 µg/mL, which resemble the MICs of conventional drugs for tuberculosis (isoniazid, 0.1 µg/mL; rifampicin, 0.4 µg/mL). Thus, the identified potent inhibitors show potential as scaffolds for further in vivo studies and might provide an impetus for the development of strong antituberculosis agents targeting MTB-AHAS.


Assuntos
Acetolactato Sintase/antagonistas & inibidores , Antituberculosos/farmacologia , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/enzimologia , Acetolactato Sintase/química , Antituberculosos/química , Antituberculosos/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Ligação Proteica , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
17.
Mitochondrial DNA B Resour ; 1(1): 228-229, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33473461

RESUMO

Taraxacum officinale is a distributed weedy plant used as a traditional medicinal herb belonging to the family Asteraceae. The complete chloroplast genome of T. officinale was generated by de novo assembly with whole genome sequence data. The chloroplast genome was 151 324 bp in length, which consisted of a large single copy region of 83 895 bp and a short single copy region of 18 549 bp separated by a pair of inverted repeat regions of 24 440 bp. The chloroplast genome contained 79 protein-coding genes, 29 tRNA genes and four rRNA genes. Phylogenetic analysis revealed that T. officinale was closely related to Lactuca sativa.

18.
Mitochondrial DNA B Resour ; 1(1): 410-411, 2016 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-33473501

RESUMO

In this study, complete chloroplast sequences of Artemisia gmelinii and Artemisia capillaris (the Asteraceae family), which have been used as herbal medicine in Korea, were characterized by de novo assembly with whole-genome sequence data. The genomes of A. gmelinii and A. capillaris were 151,318 bp and 151,056 bp in length, respectively. Both genomes harbored identical number of annotated genes, such as 80 protein coding genes, 4 rRNA genes and 30 tRNA genes. Phylogenetic tree revealed that both A. gmelinii and A. capillaris were closely grouped with other Artemisia species.

19.
Mitochondrial DNA B Resour ; 1(1): 414-415, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33473502

RESUMO

Eclipta prostrata is an herbal medicinal plant belonging to the Asteraceae family. In this study, complete chloroplast genome sequence of the E. prostrata was characterized by de novo assembly using whole genome sequence data. The genome of E. prostrata was 151,757 bp in length, which was composed of large single copy region of 83,285 bp, small single copy region of 18,346 bp and a pair of inverted repeat regions of 25,063 bp. The genome harboured 80 protein coding sequences, 30 tRNA genes and 4 rRNA genes. We confirmed close taxonomic relationship between E. prostrata and Helianthus annuus through phylogenetic analysis with chloroplast protein-coding genes.

20.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(4): 3033-4, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26162051

RESUMO

The complete chloroplast genome sequence of Panax quinquefolius, an important medicinal herb, was generated by de novo assembly with low-coverage whole-genome sequence data and manual correction. A circular 156 088-bp chloroplast genome showed typical chloroplast genome structure comprising a large single copy region of 86 095 bp, a small single copy region of 17 993 bp, and a pair of inverted repeats of 26 000 bp. The chloroplast genome had 87 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Phylogenetic analysis with the chloroplast genome revealed that P. quinquefolius is much closer to P. ginseng than P. notoginseng.


Assuntos
Genoma de Cloroplastos , Genômica , Panax/classificação , Panax/genética , Genes de Plantas , Genômica/métodos , Fases de Leitura Aberta , Filogenia , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA