Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36501426

RESUMO

Acer tegmentosum, a deciduous tree belonging to Aceraceae, has been used in traditional oriental medicine for treating hepatic disorders, such as hepatitis, cirrhosis, and liver cancer. We evaluated the estrogen-like effects of A. tegmentosum using an estrogen receptor (ER)-positive breast cancer cell line, namely MCF-7, to identify potential phytoestrogens and found that an aqueous extract of A. tegmentosum promoted cell proliferation in MCF-7 cells. Five phenolic compounds (1-5) were separated and identified from the active fraction using bioassay-guided fractionation of crude A. tegmentosum extract and phytochemical analysis. The chemical structures of the compounds were characterized as vanillic acid (1), 4-hydroxy-benzoic acid (2), syringic acid (3), isoscopoletin (4), and (E)-ferulic acid (5) based on the analysis of their nuclear magnetic resonance spectra and liquid chromatography-mass spectrometry data. All five compounds were evaluated using an E-screen assay for their estrogen-like effects on MCF-7 cells. Among the tested compounds, only 4-hydroxy-benzoic acid (2) promoted the proliferation of MCF-7 cells, which was mitigated by the ER antagonist, ICI 182,780. The mechanism underlying the estrogen-like effect of 4-hydroxy-benzoic acid (2) was evaluated via western blotting analysis to determine the expression levels of extracellular signal-regulated kinase (ERK), phosphoinositide 3-kinase (PI3K), serine/threonine kinase (AKT), and ERα. Our results demonstrated that 4-hydroxy-benzoic acid (2) induced the increase in the protein expression levels of p-ERK, p-AKT, p-PI3K, and p-Erα, concentration dependently. Collectively, these experimental results suggest that 4-hydroxy-benzoic acid (2) is responsible for the estrogen-like effects of A. tegmentosum and may potentially aid in the control of estrogenic effects during menopause.

2.
Antioxidants (Basel) ; 11(9)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36139835

RESUMO

Hepatocellular carcinoma (HCC) is the fastest-growing tumor capable of spreading to other organs via blood vessels formed by endothelial cells. Apoptosis and angiogenesis-targeting therapies are attractive for cancer treatment. In this study, we aimed to study the in vitro cytotoxicity of Withania somnifera against human HCC (HepG2) cells, identify potential antitumoral withanolide glycosides from the active fraction, and elucidate cytotoxic molecular mechanisms of identified bioactive compounds. W. somnifera (Solanaceae), well-known as 'ashwagandha', is an Ayurvedic medicinal plant used to promote health and longevity, and the MeOH extract of W. somnifera root exhibited cytotoxicity against HepG2 cells during initial screening. Bioactivity-guided fractionation of the MeOH extract and subsequent phytochemical investigation of the active n-BuOH-soluble fraction resulted in the isolation of five withanolide glycosides (1-5), including one new metabolite, withanoside XIII (1), aided by liquid chromatography-mass spectrometry-based analysis. The new compound structure was determined by 1D and 2D nuclear magnetic resonance spectroscopy, high-resolution electrospray ionization mass spectroscopy, electronic circular dichroism, and enzymatic hydrolysis. In addition, withanoside XIIIa (1a) was identified as the new aglycone (1a) of 1. Isolated withanolide glycosides 1-5 and 1a were cytotoxic toward HepG2 cells; withagenin A diglucoside (WAD) (3) exhibited the most potent cytotoxicity against HepG2 cells, with cell viability less than 50% at 100 µM. WAD cytotoxicity was mediated by both extrinsic and intrinsic apoptosis pathways. Treatment with WAD increased protein expression levels of cleaved caspase-8, cleaved caspase-9, cleaved caspase-3, Bcl-2-associated X protein (Bax), and cleaved poly(ADP-ribose) polymerase (cleaved PARP) but decreased expression levels of B-cell lymphoma 2 (Bcl-2). Moreover, WAD inhibited tubular structure formation in human umbilical vein endothelial cells (HUVECs) by inhibiting the protein expression of vascular endothelial growth factor receptor 2 and its downstream pathways, including extracellular signal-regulated kinase (ERK), phosphoinositide 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR). These effects were also enhanced by co-treatment with ERK and PI3K inhibitors. Overall, these results indicate that WAD (3) induced HepG2 apoptosis and inhibited HUVEC tube formation, suggesting its potential application in treating liver cancers.

3.
J Ginseng Res ; 46(3): 357-366, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600781

RESUMO

Background: Withania somnifera (Solanaceae), generally known as Indian ginseng, is a medicinal plant that is used in Ayurvedic practice for promoting health and longevity. This study aims to identify the bioactive metabolites from Indian ginseng and elucidate their structures. Methods: Withanolides were purified by chromatographic techniques, including HPLC coupled with LC/MS. Chemical structures of isolated withanolides were clarified by analyzing the spectroscopic data from 1D and 2D NMR, and HR-ESIMS experiment. Absolute configurations of the withanolides were established by the application of NMR chemical shifts and ECD calculations. Anti-adipogenic activities of isolates were evaluated using 3T3-L1 preadipocytes with Oil Red O staining and quantitative real-time PCR (qPCR). Results: Phytochemical examination of the roots of Indian ginseng afforded to the isolation of six withanolides (1-6), including three novel withanolides, withasilolides G-I (1-3). All the six compounds inhibited adipogenesis and suppressed the enlargement of lipid droplets, compared to those of the control. Additionally, the mRNA expression levels of Fabp4 and Adipsin, the adipocyte markers decreased noticeably following treatment with 25 µM of 1-6. The active compounds (1-6) also promoted lipid metabolism by upregulating the expression of the lipolytic genes HSL and ATGL and downregulating the expression of the lipogenic gene SREBP1. Conclusion: The results of our experimental studies suggest that the withasilolides identified herein have anti-adipogenic potential and can be considered for the development of therapeutic strategies against adipogenesis in obesity. Our study also provides a mechanistic rationale for using Indian ginseng as a potential therapeutic agent against obesity and related metabolic diseases.

4.
Plants (Basel) ; 10(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34834844

RESUMO

The aim of this study was to explore the protective effects of bioactive compounds from the fruit of the mulberry tree (Morus alba L.) against cisplatin-induced apoptosis in LLC-PK1 pig kidney epithelial cells. Morus alba fruit is a well-known edible fruit commonly used in traditional folk medicine. Chemical investigation of M. alba fruit resulted in the isolation and identification of six phytosterols (1-6). Their structures were determined as 7-ketositosterol (1), stigmast-4-en-3ß-ol-6-one (2), (3ß,6α)-stigmast-4-ene-3,6-diol (3), stigmast-4-ene-3ß,6ß-diol (4), 7ß-hydroxysitosterol 3-O-ß-d-glucoside (5), and 7α-hydroxysitosterol 3-O-ß-d-glucoside (6) by analyzing their physical and spectroscopic data as well as liquid chromatography/mass spectrometry data. All compounds displayed protective effects against cisplatin-induced LLC-PK1 cell damage, improving cisplatin-induced cytotoxicity to more than 80% of the control value. Compound 1 displayed the best effect at a relatively low concentration by inhibiting the percentage of apoptotic cells following cisplatin treatment. Its molecular mechanisms were identified using Western blot assays. Treatment of LLC-PK1 cells with compound 1 decreased the upregulated phosphorylation of p38 and c-Jun N-terminal kinase (JNK) following cisplatin treatment. In addition, compound 1 significantly suppressed cleaved caspase-3 in cisplatin-induced LLC-PK1 cells. Taken together, these findings indicated that cisplatin-induced apoptosis was significantly inhibited by compound 1 in LLC-PK1 cells, thereby supporting the potential of 7-ketositosterol (1) as an adjuvant candidate for treating cisplatin-induced nephrotoxicity.

5.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34681241

RESUMO

Withania somnifera (Solanaceae), well-known as 'Indian ginseng' or 'Ashwagandha', is a medicinal plant that is used in Ayurvedic practice to promote good health and longevity. As part of an ongoing investigation for bioactive natural products with novel structures, we performed a phytochemical examination of the roots of W. somnifera employed with liquid chromatography-mass spectrometry (LC/MS)-based analysis. The chemical analysis of the methanol extract of W. somnifera roots using repeated column chromatography and high-performance liquid chromatography under the guidance of an LC/MS-based analysis resulted in a new withanolide, withasomniferol D (1). The structure of the newly isolated compound was elucidated by spectroscopic methods, including one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) and high-resolution (HR) electrospray ionization (ESI) mass spectroscopy, and its absolute configuration was established by electronic circular dichroism (ECD) calculations. The anti-adipogenic activities of withasomniferol D (1) were evaluated using 3T3-L1 preadipocytes with Oil Red O staining and quantitative real-time polymerase chain reaction (qPCR). We found that withasomniferol D (1) inhibited adipogenesis and suppressed the enlargement of lipid droplets compared to the control. Additionally, the mRNA expression levels of adipocyte markers Fabp4 and Adipsin decreased noticeably following treatment with 25 µM of withasomniferol D (1). Taken together, these findings provide experimental evidence that withasomniferol D (1), isolated from W. somnifera, exhibits anti-adipogenic activity, supporting the potential application of this compound in the treatment of obesity and related metabolic diseases.

6.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360887

RESUMO

The fruits of the mulberry tree (Morus alba L.), known as white mulberry, have been consumed in various forms, including tea, beverages, and desserts, worldwide. As part of an ongoing study to discover bioactive compounds from M. alba fruits, the anti-inflammatory effect of compounds from M. alba were evaluated in lipopolysaccharide (LPS)-stimulated mouse RAW 264.7 macrophages. Phytochemical analysis of the ethanol extract of the M. alba fruits led to the isolation of 22 compounds. Among the isolated compounds, to the best of our knowledge, compounds 1, 3, 5, 7, 11, 12, and 14-22 were identified from M. alba fruits for the first time in this study. Inhibitory effects of 22 compounds on the production of the nitric oxide (NO) known as a proinflammatory mediator in LPS-stimulated RAW 264.7 macrophages were evaluated using NO assays. Western blot analysis was performed to evaluate the anti-inflammatory effects of cyclo(L-Pro-L-Val) (5). We evaluated whether the anti-inflammatory effects of cyclo(L-Pro-L-Val) (5) following LPS stimulation in RAW 264.7 macrophages occurred because of phosphorylation of IκB kinase alpha (IKKα), IκB kinase beta (IKKß), inhibitor of kappa B alpha (IκBα), nuclear factor kappa B (NF-κB) and activations of inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Cyclo(L-Pro-L-Val) (5) significantly suppressed phosphorylations of IKKα, IKKß, IκBα, and NF-κB and activations of iNOS and COX-2 in a concentration-dependent manner. Taken together, these results indicate that cyclo(L-Pro-L-Val) (5) can be considered a potential therapeutic agent for the treatment of inflammation-associated disorders.


Assuntos
Anti-Inflamatórios/farmacologia , Dipeptídeos/farmacologia , Frutas/química , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Morus/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
7.
Molecules ; 26(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572374

RESUMO

In this study, the protective effects of white mulberry (Morus alba) fruits on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages were investigated. The ethanol (EtOH) extract of white mulberry fruits and its derived fractions contained adequate total phenolic and flavonoid contents, with good in vitro antioxidant radical scavenging activity. The extract and fractions also markedly inhibited ROS generation and antioxidant activity. After treatment with the EtOH extract and its fractions, LPS stimulation-induced elevated nitric oxide (NO) production was restored, which was primarily mediated by downregulation of inducible NO synthase expression. A total of 20 chemical constituents including flavonoids, steroids, and phenolics were identified in the fractions using ultra-high-performance liquid chromatography (UHPLC)-quadrupole time-of-flight (QTOF) high-resolution mass spectrometry (HRMS). These findings provide experimental evidence of the protective effects of white mulberry fruit extract against oxidative stress and inflammatory responses, suggesting their nutraceutical and pharmaceutical potential as natural antioxidant and anti-inflammatory agents.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Frutas/química , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Morus/química , Extratos Vegetais/farmacologia , Animais , Flavonoides/farmacologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Células RAW 264.7
8.
Int J Mol Sci ; 20(23)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757050

RESUMO

In our ongoing research to discover natural products with neuroprotective effects, hyperoside (quercetin 3-O-galactoside) was isolated from Acer tegmentosum, which has been used in Korean traditional medicine to treat liver-related disorders. Here, we demonstrated that hyperoside protects cultured dopaminergic neurons from death via reactive oxygen species (ROS)-dependent mechanisms, although other relevant mechanisms of hyperoside activity remain largely uncharacterized. For the first time, we investigated the neuroprotective effects of hyperoside on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in neurons, and the possible underlying mechanisms. Hyperoside significantly ameliorated the loss of neuronal cell viability, lactate dehydrogenase release, excessive ROS accumulation and mitochondrial membrane potential dysfunction associated with 6-OHDA-induced neurotoxicity. Furthermore, hyperoside treatment activated the nuclear erythroid 2-related factor 2 (Nrf2), an upstream molecule of heme oxygenase-1 (HO-1). Hyperoside also induced the expression of HO-1, an antioxidant response gene. Remarkably, we found that the neuroprotective effects of hyperoside were weakened by an Nrf2 small interfering RNA, which blocked the ability of hyperoside to inhibit neuronal death, indicating the vital role of HO-1. Overall, we show that hyperoside, via the induction of Nrf2-dependent HO-1 activation, suppresses neuronal death caused by 6-OHDA-induced oxidative stress. Moreover, Nrf2-dependent HO-1 signaling activation represents a potential preventive and therapeutic target in Parkinson's disease management.


Assuntos
Antioxidantes/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Quercetina/análogos & derivados , Acer/química , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/metabolismo , Humanos , Estresse Oxidativo , Oxidopamina/toxicidade , Quercetina/farmacologia , Transdução de Sinais
9.
Biomolecules ; 9(7)2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277238

RESUMO

Ovarian cancer is one of the leading causes of cancer deaths worldwide in women, and the most malignant cancer among the different gynecological cancers. In this study, we explored potentially anticancer compounds from Cornus walteri (Cornaceae), the MeOH extract of which has been reported to show considerable cytotoxicity against several cancer cell lines. Phytochemical investigations of the MeOH extract of the stem and stem bark of C. walteri by extensive application of chromatographic techniques resulted in the isolation of 14 compounds (1-14). The isolated compounds were evaluated for inhibitory effects on the viability of A2780 human ovarian carcinoma cells and the underlying molecular mechanisms were investigated. An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was employed to assess the anticancer effects of compounds 1-14 on A2780 cells, which showed that compound 11 (betulinic acid) reduced the viability of these cells in a concentration-dependent manner and had an half maximal (50%) inhibitory concentration (IC50) of 44.47 µM at 24 h. Nuclear staining and image-based cytometric assay were carried out to detect the induction of apoptosis by betulinic acid. Betulinic acid significantly increased the condensation of nuclei and the percentage of apoptotic cells in a concentration-dependent manner in A2780 cells. Western blot analysis was performed to investigate the underlying mechanism of apoptosis. The results indicated that the expression levels of cleaved caspase-8, -3, -9, and Bax were increased in A2780 cells treated with betulinic acid, whereas those of Bcl-2 were decreased. Thus, we provide the experimental evidence that betulinic acid can induce apoptosis in A2780 cells through both mitochondria-dependent and -independent pathways and suggest the potential use of betulinic acid in the development of novel chemotherapeutics for ovarian cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Cornaceae/química , Extratos Vegetais/farmacologia , Triterpenos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Conformação Molecular , Triterpenos Pentacíclicos , Casca de Planta/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Caules de Planta/química , Relação Estrutura-Atividade , Triterpenos/química , Triterpenos/isolamento & purificação , Células Tumorais Cultivadas , Ácido Betulínico
10.
Bioorg Chem ; 87: 117-122, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30884305

RESUMO

Curcuma zedoaria rhizome (Zingiberaceae) is a well-known traditional medicinal plant used in Ayurvedic and traditional Chinese medicine to treat various cancers. This study aimed to identify the cytotoxic components from C. zedoaria rhizomes that act against gastric cancer, which is the third leading cause of death from cancer worldwide because the MeOH extract of C. zedoaria rhizome was found to show a cytotoxic effect against gastric cancer AGS cells. Repeated column chromatography and semi-preparative HPLC purification were used to separate the components from the C. zedoaria MeOH extract. Two new sesquiterpenes, curcumenol-9,10-epoxide (1) and curcuzedoalide B (2), and 12 known related sesquiterpenes (3-14) were isolated from the C. zedoaria MeOH extract. The structures of new compounds were determined by 1D and 2D NMR spectroscopic experiments and HR-ESIMS, and quantum chemical ECD calculations. The cytotoxic effects of the isolated compounds were measured in human gastric cancer AGS cells using an MTT cell viability assay. Compounds 9, 10, and 12 exhibited cytotoxic effects against gastric cancer AGS cells, with IC50 values in the range of 212-392 µM. These findings provide further experimental scientific evidence to support the traditional use of C. zedoaria rhizomes for the treatment of cancer. Curcumenol (9), 4,8-dioxo-6ß-methoxy-7α,11-epoxycarabrane (10), and zedoarofuran (12) were identified as the main cytotoxic components in C. zedoaria rhizomes.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Curcuma/química , Sesquiterpenos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Relação Estrutura-Atividade , Células Tumorais Cultivadas
11.
Bioorg Chem ; 82: 26-32, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30267971

RESUMO

Inflammation is not only a self-defense response of the innate immune system, but also the pathogenesis mechanism of multiple diseases such as arthritis, neurodegeneration, and cancer. Curcuma zedoaria Roscoe (Zingiberaceae), an indigenous plant of India, has been used traditionally in Ayurveda and folk medicine. As part of our ongoing efforts to screen traditional medicinal plants exhibiting pharmacological potential and to characterize the compounds involved, we examined the anti-inflammatory effects of the MeOH extract of C. zedoaria rhizomes using lipopolysaccharide (LPS)-stimulated RAW264.7 murine macrophage cells and found that MeOH extract inhibited the synthesis of nitric oxide (NO) in a dose-dependent manner (IC50: 23.44 ±â€¯0.77 µg/mL). In our efforts to characterize the compounds responsible for these anti-inflammatory effects, bioactivity-guided fractionation of the MeOH extract and chemical investigation of its active hexane-soluble fraction led to the successful isolation of five sesquiterpenes (1-5), the structures of which were elucidated by NMR spectroscopic analysis and LC/MS analysis. Among them, curcuzedoalide (5) exhibited potent inhibitory effects on NO synthesis (IC50: 12.21 ±â€¯1.67 µM) and also suppressed pre-inflammatory protein expression of iNOS and COX-2. Curcuzedoalide (5) was thus determined to be a contributor to the anti-inflammatory effect of C. zedoaria rhizomes and could be a potential candidate for therapeutic applications.


Assuntos
Anti-Inflamatórios/farmacologia , Curcuma/química , Rizoma/química , Sesquiterpenos/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/toxicidade , Ciclo-Oxigenase 2/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Células RAW 264.7 , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/toxicidade
12.
Nutrients ; 10(12)2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518114

RESUMO

Phytoestrogens derived from plants have attracted the attention of the general public and the medical community due to their potentially beneficial role in relieving menopausal symptoms. The deciduous tree Acer tegmentosum Maxim (Aceraceae) has long been utilized in Korean folk medicine to alleviate many physiological disorders, including abscesses, surgical bleeding, and liver diseases. In order to explore structurally and/or biologically new constituents from Korean medicinal plants, a comprehensive phytochemical study was carried out on the bark of A. tegmentosum. One new phenolic compound with a 1,4-benzodioxane scaffold, isoamericanoic acid B (1), as well as with nine known phenolic compounds (2⁻10), were successfully isolated from the aqueous extracts of the bark of A. tegmentosum. A detailed analysis using 1D and 2D NMR spectroscopy, electronic circular dichroism (ECD) spectral data, and LC/MS afforded the unambiguous structural determination of all isolated compounds, including the new compound 1. In addition, compounds 2, 4, 5, and 9 were isolated and identified from the bark of A. tegmentosum for the first time. All isolated compounds were tested for their estrogenic activities using an MCF-7 BUS cell proliferation assay, which revealed that compounds 1, 2, and 10 showed moderate estrogenic activity. To study the mechanism of this estrogenic effect, a docking simulation of compound 1, which showed the best estrogenic activity, was conducted with estrogen receptor (ER) -α and ER-ß, which revealed that it interacts with the key residues of ER-α and ER-ß. In addition, compound 1 had slightly higher affinity for ER-ß than ER-α in the calculated Gibbs free energy for 1:ER-α and 1:ER-ß. Thus, the present experimental evidence demonstrated that active compound 1 from A. tegmentosum could be a promising phytoestrogen for the development of natural estrogen supplements.


Assuntos
Acer/química , Dioxanos/química , Fenóis/química , Fitoestrógenos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dioxanos/isolamento & purificação , Dioxanos/metabolismo , Dioxanos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Fenóis/isolamento & purificação , Fenóis/metabolismo , Fenóis/farmacologia , Fitoestrógenos/isolamento & purificação , Fitoestrógenos/metabolismo , Fitoestrógenos/farmacologia , Casca de Planta/química , Extratos Vegetais/química , Ligação Proteica , Receptores de Estrogênio/química , Receptores de Estrogênio/metabolismo
13.
Molecules ; 23(11)2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30360474

RESUMO

Cornus walteri Wanger (Cornaceae) has been broadly used in traditional East Asian medicine for the treatment of various disorders, including skin inflammation and diarrhea. As part of our efforts to identify structurally and/or biologically new compounds from Korean medicinal plants, we have explored potentially new bioactive constituents from C. walteri. In the present study, seven triterpenoids (1⁻7) were isolated from C. walteri stems and stem bark. Compounds 1⁻3 were new tirucallane triterpenoids (cornusalterins N-P) and compounds 4⁻7 were isolated for the first time from C. walteri. The structures of the new compounds were determined based on 1D and 2D NMR spectroscopic data interpretations and HR-ESIMS, as well as a computational method coupled with a statistical procedure (DP4+). The regulatory effects of the isolated triterpenoids (1⁻7) on mesenchymal stem cell (MSC) differentiation to adipocytes and osteoblasts were examined in the C3H10T1/2 cell line. Although these compounds had little effect on MSC differentiation to osteoblasts, lipid droplet formation in adipocyte-differentiated MSCs decreased in the presence of the seven triterpenoids. Compounds 1 and 4 each had a relatively distinct correlation between dose and efficacy, showing adipogenesis suppression at higher concentrations. Our findings demonstrate that the active compounds 1 and 4 can exert beneficial effects in regulation of adipocyte differentiation.


Assuntos
Adipócitos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Cornus/química , Osteoblastos/efeitos dos fármacos , Casca de Planta/química , Extratos Vegetais/farmacologia , Caules de Planta/química , Triterpenos/farmacologia , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Linhagem Celular , Espectroscopia de Ressonância Magnética , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Estrutura Molecular , Osteoblastos/citologia , Osteoblastos/metabolismo , Compostos Fitoquímicos/química , Extratos Vegetais/química , Relação Estrutura-Atividade , Triterpenos/química
14.
Int J Mol Sci ; 19(4)2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-29642519

RESUMO

Mulberry, the fruit of white mulberry tree (Morus alba L., Moraceae), is commonly used in traditional Chinese medicines as a sedative, tonic, laxative, and emetic. In our continuing research of the bioactive metabolites from mulberry, chemical analysis of the fruits led to the isolation of five compounds, 1-5. The compounds were identified as butyl pyroglutamate (1), quercetin 3-O-ß-d-glucoside (2), kaempferol 3-O-ß-d-rutinoside (3), rutin (4), and 2-phenylethyl d-rutinoside (5) by spectroscopic data analysis, comparing their nuclear magnetic resonance (NMR) data with those in published literature, and liquid chromatography-mass spectrometry analysis. The isolated compounds 1-5 were evaluated for their effects on anticancer drug-induced side effects by cell-based assays. Compound 1 exerted the highest protective effect against cisplatin-induced kidney cell damage. This effect was found to be mediated through the attenuation of phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase, p38, mitogen-activated protein kinase, and caspase-3 in cisplatin-induced kidney cell damage.


Assuntos
Cisplatino/efeitos adversos , Frutas/química , Rim/citologia , Morus/química , Compostos Fitoquímicos/farmacologia , Animais , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Rim/efeitos dos fármacos , Rim/metabolismo , Células LLC-PK1 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Compostos Fitoquímicos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Suínos
15.
Mol Med Rep ; 17(4): 5982-5987, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29436651

RESUMO

A phytochemical investigation of the MeOH extracts from mulberries (the fruit of Morus alba L.) led to the identification of six heterocyclic compounds (1­6). These compounds were screened to detect whether they protected pancreatic INS­1 cells from streptozotocin (STZ)­induced cytotoxicity. Compound 3 was the most effective at preventing STZ­induced cytotoxicity and the production of reactive oxygen species (ROS) in INS­1 cells. In addition, compound 3 effectively prevented apoptosis induced by STZ in INS­1 cells. Compound 3 also prevented STZ­mediated cleavage of caspase­8, caspase­3 and poly (ADP­ribose) polymerase and increased the expression of B­cell lymphoma­2 (Bcl­2), an anti­apoptotic Bcl­2 family protein. In conclusion, the results of the present study indicate that compound 3 extracted from the fruit of M. alba was highly effective in preventing type 1 diabetes mellitus and may be a novel treatment option.


Assuntos
Apoptose/efeitos dos fármacos , Compostos Heterocíclicos/farmacologia , Morus/química , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Estreptozocina/farmacologia , Animais , Linhagem Celular , Compostos Heterocíclicos/química , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Extratos Vegetais/química , Substâncias Protetoras/química , Ratos , Espécies Reativas de Oxigênio/metabolismo
16.
Nat Prod Commun ; 11(4): 461-3, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27396193

RESUMO

Bacterially-produced small molecules demonstrate a wide range of structural and functional diversity. A new diketopiperazine, cyclo(D-trans-Hyp-L-Leu) (1), and five other known diketopiperazines (2-6), were isolated and purified from the fermented broth of a Kenyan bacterium Bacillus licheniformis LB 8CT. The structure of 1 was elucidated by a combination of extensive spectroscopic analyses, including 2D NMR and HR-MS, and the absolute configuration was determined by a combination of NOESY analysis and Marfey's method. The known compounds were identified as cyclo(D-cis-Hyp-L-Leu) (2), cyclo(D-cis-Hyp-L-Phe) (3), cyclo(D-Pro-L-Tyr) (4), cyclo-(D-Trp-L-Leu) (5), and cyclo(L-Tyr-Gly) (6) by comparison of their spectroscopic and physical data with reported values. Compounds 1-6 were tested for antifungal and antimicrobial properties.


Assuntos
Bacillus/química , Dicetopiperazinas/isolamento & purificação , Peptídeos Cíclicos/isolamento & purificação , Dicetopiperazinas/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peptídeos Cíclicos/química
17.
Bioorg Med Chem Lett ; 25(24): 5712-5, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26547693

RESUMO

A new cerebroside, cerebroside E (1) was isolated from the fruiting bodies of Hericium erinaceus (Hericiaceae). The structure of 1 was elucidated by a combination of extensive spectroscopic analyses, including extensive 2D NMR, HR-MS, and chemical reactions. Compound 1 was evaluated for its applicability to medicinal use in several human diseases using cell-based assays. As a result, compound 1 attenuated cisplatin-induced nephrotoxicity in LLC-PK1 cells and exhibited a significant inhibitory effect on angiogenesis in HUVECs. These results collectively reflect the beneficial effects of compound 1 in cancer treatment.


Assuntos
Basidiomycota/química , Cerebrosídeos/química , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Animais , Basidiomycota/metabolismo , Cerebrosídeos/isolamento & purificação , Cerebrosídeos/farmacologia , Carpóforos/química , Carpóforos/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Células LLC-PK1 , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Conformação Molecular , Neovascularização Fisiológica/efeitos dos fármacos , Suínos
18.
Nat Prod Commun ; 10(11): 1929-32, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26749829

RESUMO

Euonymus alatus (Celastraceae) has been used as an anticancer agent in Korean traditional medicine. However, the potential bioactive contributors to the anticancer effects have not been thoroughly studied. Our screening test revealed that the MeOH extract of E. alatus twigs exhibited significant cytotoxicity against A549, SK-OV-3, and SK-MEL-2 cell lines. A bioassay-guided separation of the MeOH extract of E. alatus twigs resulted in the isolation and identification of 14 triterpenes as main phytochemicals. The structures of the compounds were elucidated on the basis of spectroscopic evidence as lupeol (1), betulin (2), 3ß,28,30-lup-20(29)-ene triol (3), lupenone (4), betulone (5), 28,30-dihydroxy-3-oxolup-20(29)-ene (6), messagenin (7), glut-5-en-3ß-ol (8), maslinic acid (9), hederagenin (10), 3-oxo-11α-methoxyolean-12-ene (11), 3ß-hydroxy-1-oxo-olean-12-en-28-oic acid (12), ursolic acid (13), and 2a-hydroxy- ursolic acid (14). Of these compounds, 3, 6-8, and 10-14 were isolated for the first time from this plant. All isolated triterpenoids had consistent antiproliferative activities against A549, SK-OV-3, SK-MEL-2, and HCT-15 cell lines. Compounds 2, 5, and 7 showed significant cytotoxicity against all four cell lines tested, with IC50 values of 3.26-8.61 µM.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Euonymus/química , Extratos Vegetais/farmacologia , Triterpenos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Bioensaio , Linhagem Celular Tumoral , Humanos , Extratos Vegetais/química , Caules de Planta/química , Triterpenos/química , Triterpenos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA