Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Environ Toxicol ; 39(5): 3198-3210, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38351887

RESUMO

In this presentation, we explored the molecular mechanisms of N. nucifera leaf water extracts (NLWEs) and polyphenol extract (NLPE) on scopolamine-induced cell apoptosis and cognition defects. The administration of NLWE and NLPE did not alter the body weight and serum biomarker rs and significantly ameliorated scopolamine-induced cognition impairment according to Y-maze test analysis. In mice, treatment with scopolamine disrupted normal histoarchitecture in the hippocampus, whereas the administration of NLWE and NLPE reversed the phenomenon. Western blot analysis revealed that scopolamine mitigated the expression of doublecortin (DCX), nestin, and NeuN, and cotreatment with NLWE or NLPE significantly recovered the expression of these proteins. NLWE and NLPE upregulated DCX and NeuN expression in the hippocampus region, as evidenced by immunohistochemical staining analysis of scopolamine-treated mice. NLWE and NLPE obviously elevated brain-derived neurotrophic factor (BDNF) and enhanced its downstream proteins activity. NLWE and NLPE attenuated scopolamine-induced apoptosis by reducing Bax and increased Bcl-2 expression. In addition, scopolamine also triggered apoptosis in human neuroblastoma SH-SY5Y cells whereas co-treatment with NLWE or quercetin-3-glucuronide (Q3G) reversed the phenomenon. NLWE or Q3G enhanced Bcl-2 and reduced Bax expression in the presence of scopolamine in SH-SY5Y cells. NLWE or Q3G recovered the inhibitory effects of scopolamine on neurogenesis and BDNF signals in SH-SY5Y cells. Overall, our results revealed that N. nucifera leaf extracts and Q3G promoted adult hippocampus neurogenesis and prevented apoptosis to mitigate scopolamine-induced cognition dysfunction through the regulation of BDNF signaling pathway.


Assuntos
Nelumbo , Neuroblastoma , Camundongos , Humanos , Animais , Escopolamina/farmacologia , Escopolamina/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Nelumbo/química , Nelumbo/metabolismo , Proteína X Associada a bcl-2/metabolismo , Neuroblastoma/metabolismo , Hipocampo/metabolismo , Neurogênese , Aprendizagem em Labirinto , Extratos Vegetais/química , Cognição
2.
J Tradit Complement Med ; 13(5): 511-520, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37693097

RESUMO

Background and aim: In traditional medicine, Machilus zuihoensis Hayata bark (MZ) is used in combination with other medicines to treat gastric cancer, gastric ulcer (GU), and liver and cardiovascular diseases. This study aims to evaluate the gastroprotective effects and possible mechanism(s) of MZ powder against acidic ethanol (AE)-induced GU and its toxicity in mice. Experimental procedure: The gastroprotective effect of MZ powder was analyzed by orally administering MZ for 14 consecutive days before AE-inducing GU. Ulcer index (UI) and protection percentage were calculated, hematoxylin and eosin staining and periodic acid-Schiff staining were performed, and gastric mucus weights were measured. The antioxidative, anti-inflammatory, and anti-apoptotic mechanisms, and possible signaling pathway(s) were studied. Results and conclusion: Pretreatment with MZ (100 and 200 mg/kg) significantly decreased 10 µL/g AE-induced mucosal hemorrhage, edema, inflammation, and UI, resulted in protection percentages of 88.9% and 93.4%, respectively. MZ pretreatment reduced AE-induced oxidative stress by decreasing malondialdehyde level and restoring superoxide dismutase activity. MZ pretreatment demonstrated anti-inflammatory effects by reducing both serum and gastric tumor necrosis factor-α, interleukin (IL)-6, and IL-1ß levels. Furthermore, MZ pretreatment exhibited anti-apoptotic effect by decreasing Bcl-2 associated X protein/B-cell lymphoma 2 ratio. The gastroprotective mechanisms of MZ involved inactivations of nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) and mitogen activated protein kinase (MAPK) signaling pathways. Otherwise, 200 mg/kg MZ didn't induce liver or kidney toxicity. In conclusion, MZ protects AE-induced GU through mucus secreting, antioxidative, anti-inflammatory, and anti-apoptotic mechanisms, and inhibitions of NF-κB and MAPK signaling pathways.

3.
Int J Mol Sci ; 22(18)2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34576011

RESUMO

Both the detrimental effect of prenatal exposure to di-(2-ethylhexyl)-phthalate (DEHP) and the beneficial effects of physical exercise on brain functions have been reported. The oxytocin pathway has been implicated in the onset of maternal behaviors. Epigenetic modification of the oxytocin receptor gene (OXTR) through DNA methylation has been associated with the pathogenesis of neuropsychiatric disorders. The purpose of this study was to investigate the effects of prenatal DEHP exposure on oxytocin-regulated maternal behaviors and to examine the protective effect of exercise. Pregnant rats (F0) were fed with vehicle or DEHP during gestation and the offspring females (F1) were assessed for their maternal behaviors by pup retrieval test at postpartum. The results showed that reduced pup retrieval activities without significant alteration of stress responses were observed in the prenatally DEHP-exposed females. Prenatal DEHP exposure decreased the expressions of oxytocin, Oxtr mRNA, and oxytocin receptor, and increased Oxtr methylation in the hypothalamus of postpartum female rats. There were no significant effects of exercise on behavioral, biochemical, and epigenetic measurements. These results suggest that prenatal DEHP exposure has a long-term adverse effect on maternal behaviors; Oxtr hyper-methylation may be a potential epigenetic mechanism for this alteration, which cannot be prevented by physical exercise during childhood.


Assuntos
Dietilexilftalato/toxicidade , Hipotálamo/efeitos dos fármacos , Comportamento Materno/efeitos dos fármacos , Condicionamento Físico Animal , Efeitos Tardios da Exposição Pré-Natal , Animais , Metilação de DNA , Feminino , Hipotálamo/metabolismo , Gravidez , Ratos Sprague-Dawley , Receptores de Ocitocina/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-34035824

RESUMO

Excessive alcohol intake is a major cause of chronic liver damage and is highly associated with the development of a spectrum of hepatic disorders, including steatohepatitis, liver cirrhosis, and liver cancer. Thus, we aimed to explore the hepatoprotective effects of an aqueous mulberry leaf extract (AME) on alcoholic fatty liver disorder (AFLD) by using a mouse model fed with excessive ethanol. Compared with the normal diet, the ethanol diet significantly increased the body weight of the mice, while the AME supplement reduced the weight gain caused by the ethanol diet. The ethanol diet also attenuated the activity of alcohol dehydrogenase and antioxidant enzymes but increased lipid peroxidation in the liver, which were reversed by AME supplementation. Additionally, AME supplementation diminished the ethanol diet-induced hepatic leukocyte infiltration and expressions of IL-6 and TNFα. Moreover, AME supplementation also reduced the ethanol-diet-induced lipid accumulation and expression of 1-acylglycerol-3-phosphate acyltransferase, acetyl-CoA carboxylase, low-density lipoprotein receptor, and sterol regulatory element-binding protein-1/2 in the liver. Collectively, AME supplementation improved liver lipid accumulation and proinflammatory response in mice induced by the ethanol diet, which was associated with the upregulation of ethanol-metabolizing enzymes and the downregulation of lipogenesis components.

5.
Int J Med Sci ; 18(11): 2285-2293, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967604

RESUMO

This study examined the effect of the Flos Lonicerae Japonicae water extract (FLJWE), chlorogenic acid, and luteolin on pseudorabies virus (PRV)-induced inflammation in RAW264.7 cells and elucidated related molecular mechanisms. The results revealed that FLJWE and luteolin, but not chlorogenic acid, inhibited the production of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and inflammatory cytokines in PRV-infected RAW 264.7 cells. We found that the FLJWE and luteolin suppressed nuclear factor (NF)-κB activation by inhibiting the phosphorylation of signal transducer and activator of transcription 1 and 3 (STAT1 and STAT3, respectively). Moreover, the FLJWE significantly upregulated the expression of pNrf2 and its downstream target gene heme oxygenase-1 (HO-1). Our data indicated that FLJWE and luteolin reduced the expression of proinflammatory mediators and inflammatory cytokines, such as COX-2 and iNOS, through the suppression of the JAK/STAT1/3-dependent NF-κB pathway and the induction of HO-1 expression in PRV-infected RAW264.7 cells. The findings indicate that the FLJWE can be used as a potential antiviral agent.


Assuntos
Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Lonicera/química , Extratos Vegetais/farmacologia , Viroses/tratamento farmacológico , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/uso terapêutico , Antivirais/isolamento & purificação , Antivirais/uso terapêutico , Modelos Animais de Doenças , Flores/química , Heme Oxigenase-1/metabolismo , Herpesvirus Suídeo 1/imunologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/virologia , Proteínas de Membrana/metabolismo , Camundongos , NF-kappa B/metabolismo , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Células RAW 264.7 , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Viroses/imunologia , Viroses/virologia , Água/química
6.
Int J Med Sci ; 18(1): 53-64, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390773

RESUMO

Mulberry leaves (Morus alba L.), which are traditional Chinese herbs, exert several biological functions, such as antioxidant, anti-inflammation, antidiabetic, and antitumor. Alcohol intake increases inflammation and oxidative stress, and this increase causes liver injury and leads to liver steatosis, cirrhosis, and hepatocellular carcinoma, which are major health problems worldwide. Previous report indicated that mulberry leaf extract (MLE) exited hepatoprotection effects against chronic alcohol-induced liver damages. In this present study, we investigated the effects of MLE on acute alcohol and liver injury induced by its metabolized compound called acetaldehyde (ACE) by using in vivo and in vitro models. Administration of MLE reversed acute alcohol-induced liver damages, increased acetaldehyde (ACE) level, and decreased aldehyde dehydrogenase activity in a dose-dependent manner. Acute alcohol exposure-induced leukocyte infiltration and pro-inflammation factors, including cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6), were blocked by MLE in proportion to MLE concentration. MLE prevented alcohol-induced liver apoptosis via enhanced caveolin-1 expression and attenuated EGFR/STAT3/iNOS pathway using immunohistochemical analysis. ACE induced proteins, such as iNOS, COX-2, TNF-α, and IL-6, and inhibited superoxide dismutase expression, whereas co-treated with MLE reversed these proteins expression. MLE also recovered alcohol-induced apoptosis in cultured Hep G2 cells. Overall, our findings indicated that MLE ameliorated acute alcohol-induced liver damages by reducing ACE toxicity and inhibiting apoptosis caused by oxidative stress signals. Our results implied that MLE might be a potential agent for treating alcohol liver disease.


Assuntos
Acetaldeído/toxicidade , Antioxidantes/administração & dosagem , Hepatopatias Alcoólicas/tratamento farmacológico , Morus/química , Extratos Vegetais/administração & dosagem , Acetaldeído/metabolismo , Aldeído Desidrogenase/antagonistas & inibidores , Aldeído Desidrogenase/metabolismo , Animais , Antioxidantes/isolamento & purificação , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Ensaios Enzimáticos , Etanol/administração & dosagem , Etanol/efeitos adversos , Etanol/metabolismo , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/patologia , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Espécies Reativas de Oxigênio/metabolismo
7.
Am J Chin Med ; 47(8): 1885-1899, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31838869

RESUMO

Diet polyphenol can reportedly prevent the formation of breast-cancer cells. Nelumbo nucifera leaf extract (NLE) is enriched with polyphenols and has several cellular functions, such as anti-atherosclerosis, anti-inflammation, and antitumor. In this study, we investigated the role of NLE in the prevention of N-methyl-N-nitrosourea (NMU)-induced mammary tumor formation. Cotreatment with NLE significantly reduced the NMU-induced tumor incidence, number, and volume. NLE administration significantly repressed the tumor growth and weight of nude mice upon inoculation with BT-474 cancer cells. Immunohistochemical staining indicated that fatty acid synthetase, estrogen receptor (ER)-α, and phosphorylated ER-α were obviously reduced in the cancer part of BT-474 inoculated nude mice upon administration of 2% NLE. Western blot analysis revealed that NLE and NLPE (polyphenol-rich NLE) repressed ER-α expression and phosphorylation and decreased the phosphorylation of Her-2 without affecting their expression. Overall, NLE and NLPE exhibited more effective antitumor abilities in NMU-induced mammary cancer formation than with tamoxifen and Herceptin.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Receptor alfa de Estrogênio/metabolismo , Ácido Graxo Sintases/genética , Nelumbo/química , Receptor ErbB-2/genética , Animais , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Regulação para Baixo/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Ácido Graxo Sintases/metabolismo , Feminino , Humanos , Metilnitrosoureia/efeitos adversos , Camundongos , Camundongos Nus , Ratos , Ratos Sprague-Dawley , Receptor ErbB-2/metabolismo
8.
BMC Complement Altern Med ; 18(1): 132, 2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-29688864

RESUMO

BACKGROUND: Radix Paeoniae Rubra (RPR), a traditional Chinese herb, has anti-inflammatory and immuno-regulatory properties. This study explored the effects of RPR on stimulation of osteoclast differentiation in RAW264.7 cells and peripheral blood mononuclear cells (PBMC)s. METHODS: The mature osteoclasts were measured by bone resorption assays and TRAP staining. JNK, ERK, p38 and NF-κB inhibitors were used applied in order to verify their contribution in RPR-induced osteoclast differentiation. The NF-κB and MAPK pathways were evaluated by western blotting, RT-PCR and luciferase assay. RESULTS: RPR induced osteoclast differentiation in a dose-dependent manner and induced the resorption activity of osteoclasts differentiation of RAW264.7 cells and PBMCs. Western blotting showed that RPR treatment induced phosphorylation of JNK, ERK, and p38 in RAW 264.7 cells. Treatment of JNK, ERK, and p38 MAP kinase inhibitors verified the contribution of JNK, ERK and p38. RPR treatment induced c-Fos and NFATc1 protein expression; NF-κB inhibitor treatment and luciferase assay verified the contribution of the NF-κB pathway. CONCLUSIONS: This study demonstrated the interesting effect, in which RPR stimulated osteoclast differentiation in murine RAW264.7 cells and human monocytes.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Osteoclastos/efeitos dos fármacos , Paeonia/química , Extratos Vegetais/farmacologia , Animais , Células Cultivadas , Humanos , Leucócitos Mononucleares , Camundongos , Células RAW 264.7 , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
J Agric Food Chem ; 65(42): 9255-9265, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28982243

RESUMO

Patients with diabetes, obesity, and hyperlipidemia are all high-risk groups for fatty liver; however, the mechanism of fatty liver formation is not completely understood. Studies have indicated that abnormal fat metabolism, oxidative stress, and insulin resistance are positively correlated with peroxidation and abnormal cytokine production. Recent studies have revealed that Solanum nigrum extracts (SNE) possess anti-inflammatory, antioxidation, antihyperlipidemia, and liver protection abilities. Therefore, the present study investigated the in vivo and in vitro effects of an SNE on nonalcoholic fatty liver (NAFL)-induced hepatitis. In vivo data demonstrated that the SNE reduced blood triglyceride, sugar, and cholesterol levels, as well as fat accumulation, oxidative stress, and lipid peroxidation in high-fat-diet-treated mice. The results indicated that the SNE downregulated the expression of fatty acid synthase, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), and sterol regulatory element-binding proteins (SREBPs) through the AMP-activated protein kinase (AMPK) pathway and upregulated the expression of carnitine palmitoyltransferase 1 (CPT1) and peroxisome proliferator-activated receptor alpha. Furthermore, we prepared a Solanum nigrum polyphenol extract (SNPE) from the SNE; the SNPE reduced hepatic lipid (oleic acid) accumulation. Therefore, SNE have the potential to alleviate NAFL-induced hepatitis, and polyphenolic compounds are the main components of SNE. Moreover, SNE can be used to develop health-food products for preventing NAFL disease.


Assuntos
Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Polifenóis/administração & dosagem , Solanum nigrum/química , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Dieta Hiperlipídica/efeitos adversos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/imunologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , PPAR alfa/genética , PPAR alfa/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
10.
PLoS One ; 12(7): e0180285, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28715446

RESUMO

Lipotoxicity plays an important role in exacerbating type 2 diabetes mellitus (T2DM) and leads to apoptosis of ß cells. Recently dipeptidyl peptidase-4 (DPP-4) inhibitors have emerged as a useful tool in the treatment of T2DM. DPP-4 degrades type 1 glucagon-like peptide (GLP-1), and GLP-1 receptor (GLP-1R) signaling has been shown to protect ß cells by modulating AMPK/mTOR, PI3K, and Bax. The anti-hyperglycemic effect of Abelmoschus esculentus (AE) is well known, however its mucilage makes it difficult to further examine this effect. In our recent report, a sequence of extraction steps was used to obtain a series of subfractions from AE, each with its own composition and property. Among them F1 (rich in quercetin glucosides and pentacyclic triterpene ester) and F2 (containing large amounts of carbohydrates and polysaccharides) were found to be especially effective in attenuating DPP-4 signaling, and to have the potential to counter diabetic nephropathy. Hence, the aim of the present study was to investigate whether AE subfractions can prevent the palmitate-induced apoptosis of ß cells, and the putative signals involved. We demonstrated that AE, and especially 1 µg/mL of F2, decreased palmitate-induced apoptosis analyzed by flow cytometry. The result of western blot revealed that palmitate-induced decrease in GLP-1R and increase in DPP-4 were restored by F1 and F2. The DPP-4 inhibitor linagliptin decreased the expression of caspase 3, suggesting that DPP-4 is critically involved in apoptotic signaling. Analysis of enzyme activity revealed that palmitate increased the activity of DPP4 nearly 2 folds, while F2 especially inhibited the activation. In addition, AMPK/mTOR, PI3K and mitochondrial pathways were regulated by AE, and this attenuated the palmitate-induced signaling cascades. In conclusion, AE is useful to prevent the exacerbation of ß cell apoptosis, and it could potentially be used as adjuvant or nutraceutical therapy for diabetes.


Assuntos
Abelmoschus/química , Apoptose/efeitos dos fármacos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Ácidos Graxos não Esterificados/farmacologia , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Extratos Vegetais/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular , Dipeptidil Peptidase 4/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Ácido Palmítico/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Proteína X Associada a bcl-2/metabolismo
11.
Food Funct ; 8(1): 397-405, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28074952

RESUMO

Excessive alcohol uptake exerts hepatocellular toxicity, ultimately leading to multiple liver diseases such as steatohepatitis and liver cirrhosis. Here, we aimed to explore the effects of mulberry leaf extract (MLE) and its major components chlorogenic acid (CGA) and neochlorogenic acid (nCGA) on alcoholic steatohepatitis. We determined the composition of MLE using liquid chromatography-mass spectrometric (LC-MS) analysis, which showed that MLE consisted of mainly chlorogenic acid derivatives and other polyphenols. Next, we utilized a high alcohol-fed mouse model and demonstrated that MLE alleviated alcohol-induced hepatocellular disorders, resulting in lowered hepatic injury markers and lipid accumulation. In addition, MLE reduced lipid peroxidation and meanwhile elevated hepatic superoxide dismutase (SOD). Immunohistochemical (IHC) staining revealed that MLE elevated the expression of caveolin-1 but reduced the expressions of epidermal growth factor receptor (EGFR), signal transducer and activator of transcription (STAT), inducible nitric oxide synthase (iNOS) and receptor interacting protein (RIP) 1/3. Major components of MLE, CGA and nCGA, not only exerted a similar biological activity as MLE but also inhibited alcohol-induced pro-apoptotic signals. Involvement of caveolin-1 in MLE, CGA and nCGA was demonstrated by using specific small inhibitory RNA. In conclusion, MLE and its chlorogenic derivatives CGA and nCGA upregulate caveolin-1 expression and diminish EGFR/STAT3/iNOS signalling, which may contribute to lowered hepatic lipid accumulation and peroxidation and inhibited pro-apoptotic cascades.


Assuntos
Caveolina 1/genética , Ácido Clorogênico/administração & dosagem , Fígado Gorduroso Alcoólico/tratamento farmacológico , Morus/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Animais , Caveolina 1/metabolismo , Ácido Clorogênico/química , Etanol/efeitos adversos , Fígado Gorduroso Alcoólico/etiologia , Fígado Gorduroso Alcoólico/genética , Fígado Gorduroso Alcoólico/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Folhas de Planta/química , Regulação para Cima/efeitos dos fármacos
12.
Sci Rep ; 6: 20417, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26838546

RESUMO

Paclitaxel is a mitotic inhibitor used in cancer chemotherapy. Mulberry fruit is rich in phenolic compounds and flavonoids and exhibits chemopreventive activities. In this study, mulberry water extract (MWE) was used as a supplement to synergize with the effects of paclitaxel in the treatment of the TSGH 8301 human bladder cancer cell line. Treatment with paclitaxel combined with MWE (paclitaxel/MWE) enhanced the cytotoxicity of paclitaxel and induced severe G2/M arrest, mitotic catastrophe and subsequent apoptosis, as shown by MTT assay, HE staining and flow cytometry analyses. Differences in the expression and activation of Aurora A and Plk1 between cells treated with paclitaxel/MWE and paclitaxel alone suggested that the combined treatment caused a defect in the early steps of cytokinesis. Paclitaxel/MWE decreased EEA1 immunofluorescence staining and increased the expression of PTEN, indicating that the regimen inhibited the formation of the recycling endosome, which is required for cytokinesis. Paclitaxel/MWE also retarded tumor growth in a TSGH 8301 xenograft model via activation of PTEN and Caspase 3. These data demonstrated a synergistic effect on the anticancer efficacy of paclitaxel through MWE supplementation by promoting mitotic catastrophe through the activation of PTEN, providing a novel and effective therapeutic option for bladder cancer treatment strategies.


Assuntos
Antineoplásicos/administração & dosagem , Morus/química , PTEN Fosfo-Hidrolase/metabolismo , Paclitaxel/administração & dosagem , Extratos Vegetais/administração & dosagem , Neoplasias da Bexiga Urinária/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Mitose/efeitos dos fármacos , Paclitaxel/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Neoplasias da Bexiga Urinária/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Agric Food Chem ; 63(18): 4587-96, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25912298

RESUMO

Excess fat accumulation in the liver increases the risk of developing progressive liver injuries ranging from a fatty liver to hepatocarcinoma. In a previous study, we demonstrated that the polyphenol components of Sechium edule shoots attenuated hepatic lipid accumulation in vitro. Therefore, we investigated the effects and mechanisms of the extract of S. edule shoots (SWE) to modulate fat accumulation in a high-fat-diet (HFD)-induced animal model. In this study, we found that the SWE can reduce the body weight, adipose tissue fat, and regulate hepatic lipid contents (e.g., triglyceride and cholesterol). Additionally, treatment of caffeic acid (CA) and hesperetin (HPT), the main ingredients of SWE, also inhibited oleic acid (OA)-induced lipid accumulation in HepG2 cells. SWE enhanced the activation of AMP-activating protein kinase (AMPK) and decreased numerous lipogenic-related enzymes, such as sterol regulator element-binding proteins (SREBPs), e.g., SREBP-1 and SREBP-2, and HMG-CoA reductase (HMGCoR) proteins, which are critical regulators of hepatic lipid metabolism. Taken together, the results demonstrated that SWE can prevent a fatty liver and attenuate adipose tissue fat by inhibiting lipogenic enzymes and stimulating lipolysis via upregulating AMPK. It was also demonstrated that the main activation components of SWE are both CA and HPT.


Assuntos
Adipogenia/efeitos dos fármacos , Cucurbitaceae/química , Fígado Gorduroso/tratamento farmacológico , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Obesidade/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/fisiopatologia , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Fígado/metabolismo , Masculino , Obesidade/genética , Obesidade/metabolismo , Obesidade/fisiopatologia , Ácido Oleico/metabolismo , Extratos Vegetais/química , Brotos de Planta/química , Ratos , Ratos Wistar , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
14.
Food Funct ; 5(4): 678-87, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24513924

RESUMO

The present study was undertaken to evaluate the hepatoprotective effect mechanisms of Nelumbo nucifera leaves extract (NLE) in experimental alcoholic steatohepatitis animal models. We found that the NLE contained polyphenols (phenolic acids and flavonoids), and more than 70% of the main functional components in NLE could potentially provide benefits for alcoholic liver disease. The parameters of histopathology, immunohistochemistry, antioxidant defense, proinflammatory mediator and lipid synthesis-related proteins demonstrated the inhibitory effect of NLE on alcoholic steatohepatitis. Plasma and hepatic content analysis showed that NLE inhibited lipid accumulation by altering the levels of triglycerides (TG) and cholesterol (TC). Treatment with NLE increased the expression of the p-AMPK/AMPK ratio and PPAR-α. Furthermore, fatty acid oxidation and transport via carnitine palmitoyltransferase-1 (CPT1) and microsomal triglyceride transfer protein (MTP) were through the activation of the AMPK and PPAR-α signal. These results revealed that the polyphenol-rich component of NLE prevents alcoholic steatohepatitis by multiple pathways, including reduced lipid synthesis, enhanced fatty acid oxidation and transport responses, inhibited oxidative stress and facilitated anti-inflammation. Suggesting that NLE might be regarded as a beneficial food that has the potential to be developed as a natural agent for preventing alcoholic steatohepatitis.


Assuntos
Anti-Inflamatórios/administração & dosagem , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/imunologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Nelumbo/química , Extratos Vegetais/administração & dosagem , Polifenóis/administração & dosagem , Álcoois/efeitos adversos , Animais , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Folhas de Planta/química
15.
Food Chem Toxicol ; 62: 786-96, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24140469

RESUMO

Many plant extracts and their bioactive substances are well recognized for their potential to exert as chemoprotective agents against common alcoholic liver injury. In this study, the effects of Mulberry water extracts (MWE) treatment in the prevention of alcohol-induced liver injury were investigated in mice. MWE contain many nutrients and bioactive substances, including fifteen types of polyphenols and anthocyanin compounds. The parameters of histopathology, immunohistochemistry, antioxidant defense and proinflammatory mediator demonstrated the inhibitory effect of MWE on alcohol-induced liver injury. Plasma and hepatic content analysis showed that MWE inhibited the levels of liver injury biomarkers (AST, ALT and ALP), triglyceride (TG) and cholesterol (TC). Furthermore, treatment with MWE lessened the expression of lipid synthesis-related proteins, increased the p-AMPK/AMPK ratio and PPAR-α. Fatty acid oxidation and export via microsomal triglyceride transfer protein (MTP) were both activated as well as carnitine palmitoyltransferase-1 (CPT1). These results suggested that MWE prevents alcohol-induced liver injury through the activation of the AMPK and PPAR-α signal. This may be mediated by multiple pathways, including reduced lipid accumulation and lipid synthesis, increased fatty acid transport and fatty acid oxidation responses, decreased oxidative stress and facilitated anti-inflammation.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Etanol/toxicidade , Lipogênese/efeitos dos fármacos , Morus/química , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antioxidantes/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Inflamação/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR alfa/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/análise , Extratos Vegetais/química , Triglicerídeos/metabolismo
16.
J Agric Food Chem ; 61(11): 2780-8, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23428158

RESUMO

This study used high-cholesterol-fed New Zealand white rabbits and aortic vascular smooth muscle cells (VSMCs) to investigate the impact of mulberry leaf extract (MLE) on the development of atherosclerosis. The results show that the major components of MLE are polyphenols, flavonoids, carbohydrates, proteins, and lipids, and the major contituents of mulberry leaf polyphenol extract (MLPE) are polyphenols and flavonoids. In addition to improvement of liver function, the atheroma burden and levels of serum cholesterol, triglycerides, and low-density lipoprotein (LDL) are also significantly reduced after MLE treatment. MLE and MLPE improved endothelial function, inhibited proliferation and migration of aortic VSMCs, and reduced atheromas in the vascular wall. In conclusion, this study demonstrates that, in addition to exerting hypolipidemic effects, MLE and MLPE can effectively inhibit proliferation and migration of aortic VSMCs, improve vascular endothelial function, and reduce atheroma burden, thereby preventing atherosclerosis.


Assuntos
Aorta/efeitos dos fármacos , Aterosclerose/prevenção & controle , Colesterol/metabolismo , Morus/química , Miócitos de Músculo Liso/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Animais , Aorta/citologia , Aorta/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Folhas de Planta/química , Coelhos
17.
Artigo em Inglês | MEDLINE | ID: mdl-22888366

RESUMO

Curcumin (CUR) has been shown to possess a preventive effect against various cancers and interfere with multiple-cell signaling pathways. We evaluated the protective effects of CUR in regression of UVB-induced skin tumor formation in SKH-1 hairless mice and its underlying early molecular biomarkers associated with carcinogenesis. Mice irradiated with UVB at 180 mJ/cm(2) twice per week elicited 100% tumor incidence at 20 weeks. Topical application of CUR prior to UVB irradiation caused delay in tumor appearance, multiplicity, and size. Topical application of CUR prior to and immediately after a single UVB irradiation (180 mJ/cm(2)) resulted in a significant decrease in UVB-induced thymine dimer-positive cells, expression of proliferative cell nuclear antigen (PCNA), terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, and apoptotic sunburn cells together with an increase in p53 and p21/Cip1-positive cell population in epidermis. Simultaneously, CUR also significantly inhibited NF-κB, cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and nitric oxide (NO) levels. The results suggest that the protective effect of CUR against photocarcinogenesis is accompanied by downregulation of cell proliferative controls, involving thymine dimer, PCNA, apoptosis, transcription factors NF-κB, and of inflammatory responses involving COX-2, PGE2, and NO, while upregulation of p53 and p21/Cip1 to prevent DNA damage and facilitate DNA repair.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA