Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 21(14): 6336-6342, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33950692

RESUMO

Intercalation in black phosphorus (BP) can induce and modulate a variety of the properties including superconductivity like other two-dimensional (2D) materials. In this perspective, spatially controlled intercalation has the possibility to incorporate different properties into a single crystal of BP. We demonstrate anisotropic angstrom-wide (∼4.3 Å) Cu intercalation in BP, where Cu atoms are intercalated along a zigzag direction of BP because of its inherent anisotropy. With atomic structure, its microstructural effects, arising from the angstrom-wide Cu intercalation, were investigated and extended to relation with macrostructure. As the intercalation mechanism, it was revealed by in situ transmission electron microscopy and theoretical calculation that Cu atoms are intercalated through top-down direction of BP. The Cu intercalation anisotropically induces transition of angstrom-wide electronic channels from semiconductor to semimetal in BP. Our findings throw light on the fundamental relationship between microstructure changes and properties in intercalated BP, and tailoring anisotropic 2D materials at angstrom scale.


Assuntos
Fósforo , Anisotropia , Condutividade Elétrica
2.
Nature ; 582(7813): 511-514, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32581381

RESUMO

Decrease in processing speed due to increased resistance and capacitance delay is a major obstacle for the down-scaling of electronics1-3. Minimizing the dimensions of interconnects (metal wires that connect different electronic components on a chip) is crucial for the miniaturization of devices. Interconnects are isolated from each other by non-conducting (dielectric) layers. So far, research has mostly focused on decreasing the resistance of scaled interconnects because integration of dielectrics using low-temperature deposition processes compatible with complementary metal-oxide-semiconductors is technically challenging. Interconnect isolation materials must have low relative dielectric constants (κ values), serve as diffusion barriers against the migration of metal into semiconductors, and be thermally, chemically and mechanically stable. Specifically, the International Roadmap for Devices and Systems recommends4 the development of dielectrics with κ values of less than 2 by 2028. Existing low-κ materials (such as silicon oxide derivatives, organic compounds and aerogels) have κ values greater than 2 and poor thermo-mechanical properties5. Here we report three-nanometre-thick amorphous boron nitride films with ultralow κ values of 1.78 and 1.16 (close to that of air, κ = 1) at operation frequencies of 100 kilohertz and 1 megahertz, respectively. The films are mechanically and electrically robust, with a breakdown strength of 7.3 megavolts per centimetre, which exceeds requirements. Cross-sectional imaging reveals that amorphous boron nitride prevents the diffusion of cobalt atoms into silicon under very harsh conditions, in contrast to reference barriers. Our results demonstrate that amorphous boron nitride has excellent low-κ dielectric characteristics for high-performance electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA