Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Eat Disord ; 49(8): 805-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27038326

RESUMO

OBJECTIVE: Caseinolytic protease B (ClpB) produced by Enterobacteria, such as Escherichia coli, has been identified as a conformational mimetic of α-melanocyte-stimulating hormone (α-MSH), an anorexigenic and anxiogenic neuropeptide. In mice, ClpB induces α-MSH cross-reactive antibodies and activates anorexigenic brain neurons. In patients with eating disorders (ED), anti-ClpB and anti-α-MSH antibodies correlate with psychopathological traits. However, it is not known if ClpB is present in human plasma including ED patients. METHODS: Plasma concentrations of ClpB were measured using a recently developed ClpB immunoassay in female patients with anorexia nervosa, bulimia nervosa, and binge-eating disorder and compared with healthy participants, all characterized by the Eating Disorder Inventory-2 (EDI-2) scale. RESULTS: We found that ClpB was readably detectable in plasma of healthy participants and ED patients and that its concentrations were elevated in ED patients, without significant differences in patient's subgroups. Plasma ClpB concentrations correlated with the EDI-2 scores, with α-MSH as well as with plasma levels of anti-ClpB and anti-α-MSH antibodies. DISCUSSION: These data revealed that bacterial ClpB is naturally present in human plasma and that its concentrations can be elevated in ED patients and associated with ED-related psychopathological traits. These results support a link between bacterial ClpB and the ED pathophysiology. © 2016 Wiley Periodicals, Inc. (Int J Eat Disord 2016; 49:805-808).


Assuntos
Proteínas de Escherichia coli/metabolismo , Transtornos da Alimentação e da Ingestão de Alimentos/sangue , Proteínas de Choque Térmico/metabolismo , Adulto , Anorexia Nervosa/sangue , Anorexia Nervosa/microbiologia , Transtorno da Compulsão Alimentar/sangue , Transtorno da Compulsão Alimentar/microbiologia , Bulimia Nervosa/sangue , Bulimia Nervosa/microbiologia , Estudos de Casos e Controles , Cisteína Endopeptidases/metabolismo , Endopeptidase Clp , Transtornos da Alimentação e da Ingestão de Alimentos/microbiologia , Feminino , Humanos , Adulto Jovem , alfa-MSH/metabolismo
2.
Eur Neuropsychopharmacol ; 26(6): 948-58, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27052473

RESUMO

Stimulation of feeding is necessary for treatment of pathological conditions of chronic malnutrition due to anorexia. Ghrelin, a hunger hormone, is one of the candidate for pharmacological treatments of anorexia, but because of its instability in plasma has limited efficacy. We previously showed that plasmatic IgG protect ghrelin from degradation and that IgG from obese subjects and mice may increase ghrelin׳s orexigenic effect. In this study we tested if ghrelin alone or combined with IgG may improve feeding in chronically food-restricted mice with or without physical activity-based anorexia (ABA) induced by free access to a running wheel. Mice received a single daily intraperitoneal injection of ghrelin (1nM) together or not with total IgG (1nM) from obese ob/ob or lean mice before access to food during 8 days of 3h/day feeding time. We found that both ghrelin and ghrelin combined with IgG from obese, but not lean mice, prevented ABA, however, they were not able to diminish body weight loss. Physical activity was lower during the feeding period and was increased shortly after feeding in mice receiving ghrelin together with IgG from obese mice. In food-restricted mice without ABA, ghrelin treatments did not have significant effects on food intake. Thus, this study supports pharmacological use of ghrelin or ghrelin combined with IgG from obese animals for treatment of anorexia accompanied by elevated physical activity. The utility of combining ghrelin with protective IgG should be further determined in animal models of anorexia with unrestricted access to food.


Assuntos
Anorexia/prevenção & controle , Grelina/uso terapêutico , Atividade Motora , Animais , Anorexia/psicologia , Anticorpos Bloqueadores/farmacologia , Peso Corporal/efeitos dos fármacos , Restrição Calórica , Ingestão de Alimentos/efeitos dos fármacos , Grelina/antagonistas & inibidores , Grelina/sangue , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Imunoglobulina G/imunologia , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/imunologia
3.
Cell Metab ; 23(2): 324-34, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26621107

RESUMO

The composition of gut microbiota has been associated with host metabolic phenotypes, but it is not known if gut bacteria may influence host appetite. Here we show that regular nutrient provision stabilizes exponential growth of E. coli, with the stationary phase occurring 20 min after nutrient supply accompanied by bacterial proteome changes, suggesting involvement of bacterial proteins in host satiety. Indeed, intestinal infusions of E. coli stationary phase proteins increased plasma PYY and their intraperitoneal injections suppressed acutely food intake and activated c-Fos in hypothalamic POMC neurons, while their repeated administrations reduced meal size. ClpB, a bacterial protein mimetic of α-MSH, was upregulated in the E. coli stationary phase, was detected in plasma proportional to ClpB DNA in feces, and stimulated firing rate of hypothalamic POMC neurons. Thus, these data show that bacterial proteins produced after nutrient-induced E. coli growth may signal meal termination. Furthermore, continuous exposure to E. coli proteins may influence long-term meal pattern.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Trato Gastrointestinal/microbiologia , Resposta de Saciedade , Trifosfato de Adenosina/biossíntese , Tonsila do Cerebelo/metabolismo , Animais , Fenômenos Eletrofisiológicos , Endopeptidase Clp , Escherichia coli/metabolismo , Comportamento Alimentar , Feminino , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Proteínas de Choque Térmico/metabolismo , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Peptídeo YY/metabolismo , Pró-Opiomelanocortina/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Ratos Wistar
4.
Nutrition ; 31(3): 498-507, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25701341

RESUMO

OBJECTIVES: The biological background of sex-related differences in the development of eating disorders (EDs) is unknown. Recent data showed that gut bacteria Escherichia coli induce autoantibodies against anorexigenic α-melanocyte-stimulating hormone (α-MSH) associated with psychopathology in ED. The aim of this study was to compare the effects of E. coli on feeding and autoantibodies against α-MSH and adrenocorticotropic hormone (ACTH), between female and male rats. METHODS: Commensal E. coli K12 were given in a culture medium daily to adult Wistar rats by intragastric gavage over a 3-wk period; control rats received culture medium only. RESULTS: Before gavage, E. coli K12 DNA was detected in feces of female but not male rats. E. coli provision was accompanied by an increase in body weight gain in females, but a decrease in body weight gain and food intake in males. Independent of E. coli treatment, plasma levels of anti-α-MSH and ACTH immunoglobulin (Ig)G were higher in female than male rats. Females responded to E. coli by increasing α-MSH IgG levels and affinity, but males by increasing α-MSH IgM levels. Affinity of IgG for ACTH was increased in both E. coli-treated females and males, although with different kinetics. IgG from females stimulated more efficiently α-MSH-induced cyclic adenosine monophosphate production by melanocortin 4 receptor-expressing cells compared with IgG from males. DISCUSSION: Sex-related response to how E. coli affects feeding and anti-melanocortin hormone antibody production may depend on the presence of these bacteria in the gut before E. coli supplementation. These data suggest that sex-related presence of certain gut bacteria may represent a risk factor for ED development.


Assuntos
Autoanticorpos/sangue , Colo/microbiologia , Ingestão de Alimentos/imunologia , Escherichia coli , Transtornos da Alimentação e da Ingestão de Alimentos/microbiologia , Microbioma Gastrointestinal/imunologia , Melanocortinas/imunologia , Monofosfato de Adenosina/metabolismo , Hormônio Adrenocorticotrópico/imunologia , Animais , Suplementos Nutricionais , Fezes/microbiologia , Transtornos da Alimentação e da Ingestão de Alimentos/imunologia , Feminino , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Probióticos , Ratos Wistar , Receptor Tipo 4 de Melanocortina/metabolismo , Fatores Sexuais , Aumento de Peso , alfa-MSH/imunologia
5.
Proteomics ; 15(13): 2198-210, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25689466

RESUMO

Ubiquitin proteasome system contributes to the regulation of intestinal inflammatory response as its inhibition is associated with tissue damage improvement. We aimed to evaluate whether glutamine is able to limit inflammation by targeting ubiquitin proteasome system in experimental colitis. Colitis was induced in male rats by intrarectal instillation of 2-4-6-trinitrobenzen sulfonic acid (TNBS) at day 1. From day 2 to day 6, rats daily received either an intrarectal instillation of PBS (TNBS/PBS group) or glutamine (TNBS/Gln). Rats were euthanized at day 7 and colonic samples were taken to evaluate ubiqutinated proteins by proteomic approach combining 2D electrophoresis and immunoblots directed against ubiquitin. Results were then confirmed by evaluating total expression of proteins and mRNA levels. Survival rate, TNFα, and IL-1ß mRNA were improved in TNBS/Gln compared with TNBS/PBS (p < 0.05). Proteasome activities were affected by TNBS but not by glutamine. We identified eight proteins that were less ubiquitinated in TNBS/PBS compared with controls with no effect of glutamine. Four proteins were more ubiquitinated in TNBS/PBS group and restored in TNBS/Gln group. Finally, 12 ubiquitinated proteins were only affected by glutamine. Among proteins affected by glutamine, eight proteins (GFPT1, Gapdh, Pkm2, LDH, Bcat2, ATP5a1, Vdac1, and Vdac2) were involved in metabolic pathways. In conclusion, glutamine may regulate ubiquitination process during intestinal inflammation.


Assuntos
Colite/metabolismo , Enema , Glutamina/uso terapêutico , Proteômica/métodos , Animais , Western Blotting , Peso Corporal/fisiologia , Imunoprecipitação , Masculino , Mitocôndrias/metabolismo , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização por Electrospray , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA