Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sci China Life Sci ; 66(9): 2056-2069, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36795182

RESUMO

Broiler chicks are fast-growing and susceptible to dietary selenium (Se) deficiency. This study sought to reveal the underlying mechanisms of how Se deficiency induces key organ dysfunctions in broilers. Day-old male chicks (n=6 cages/diet, 6 chicks/cage) were fed with a Se-deficient diet (Se-Def, 0.047 mg Se/kg) or the Se-Def+0.3 mg Se/kg (Control, 0.345 mg Se/kg) for 6 weeks. The serum, liver, pancreas, spleen, heart, and pectoral muscle of the broilers were collected at week 6 to assay for Se concentration, histopathology, serum metabolome, and tissue transcriptome. Compared with the Control group, Se deficiency induced growth retardation and histopathological lesions and reduced Se concentration in the five organs. Integrated transcriptomics and metabolomics analysis revealed that dysregulation of immune and redox homeostasis related biological processes and pathways contributed to Se deficiency-induced multiple tissue damage in the broilers. Meanwhile, four metabolites in the serum, daidzein, epinephrine, L-aspartic acid and 5-hydroxyindoleacetic acid, interacted with differentially expressed genes with antioxidative effects and immunity among all the five organs, which contributed to the metabolic diseases induced by Se deficiency. Overall, this study systematically elucidated the underlying molecular mechanisms in the pathogenesis of Se deficiency-related diseases, which provides a better understanding of the significance of Se-mediated heath in animals.


Assuntos
Selênio , Animais , Masculino , Selênio/metabolismo , Selênio/farmacologia , Galinhas , Selenoproteínas/genética , Selenoproteínas/metabolismo , Oxirredução , Homeostase , Resposta ao Choque Térmico
2.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834640

RESUMO

Copper-zinc superoxide dismutase 1 (SOD1) has long been recognized as a major redox enzyme in scavenging superoxide radicals. However, there is little information on its non-canonical role and metabolic implications. Using a protein complementation assay (PCA) and pull-down assay, we revealed novel protein-protein interactions (PPIs) between SOD1 and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) or epsilon (YWHAE) in this research. Through site-directed mutagenesis of SOD1, we studied the binding conditions of the two PPIs. Forming the SOD1 and YWHAE or YWHAZ protein complex enhanced enzyme activity of purified SOD1 in vitro by 40% (p < 0.05) and protein stability of over-expressed intracellular YWHAE (18%, p < 0.01) and YWHAZ (14%, p < 0.05). Functionally, these PPIs were associated with lipolysis, cell growth, and cell survival in HEK293T or HepG2 cells. In conclusion, our findings reveal two new PPIs between SOD1 and YWHAE or YWHAZ and their structural dependences, responses to redox status, mutual impacts on the enzyme function and protein degradation, and metabolic implications. Overall, our finding revealed a new unorthodox role of SOD1 and will provide novel perspectives and insights for diagnosing and treating diseases related to the protein.


Assuntos
Cobre , Superóxido Dismutase , Humanos , Cobre/química , Células HEK293 , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismo , Superóxidos
3.
Nutrients ; 12(3)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143527

RESUMO

The present study aimed to investigate the intervention of selenium in the oxidative stress and apoptosis of pig livers, which were induced by a high-fat diet, and the effects of four endoplasmic reticulum (ER)-resident selenoproteins in the process. A 2×4 design trial was conducted that included two dietary fat levels (BD = basal diet and HFD = high-fat diet) and four dietary Se supplementation levels (0, 0.3, 1.0, and 3.0 mg/kg of the diet, in the form of sodium selenite (Na2SeO3)). Our results indicated that the HFD significantly increased the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the serum, as well as the degree of steatosis, the content of malondialdehyde (MDA), the apoptotic rate, and the level of mRNA caspase-3 in the liver compared to their BD counterparts (p < 0.05). Moreover, these parameters in the HFD groups were more significantly reduced (p < 0.05) for a Se concentration of 1.0 mg/kg than for the other concentrations. Further, for both the BD and HFD, the groups supplemented with 1.0 mg/kg Se showed the highest mRNA level of selenoprotein S. In conclusion, the consumption of an HFD can induce oxidative damage and apoptosis in the liver. This shows that the supplementation of Se at 1.0 mg/kg may be the optimum concentration against damage induced by HFD, and Sels may play a key role in this process.


Assuntos
Dieta Hiperlipídica , Retículo Endoplasmático/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Selenoproteínas/metabolismo , Animais , Antioxidantes/metabolismo , Apoptose , Biomarcadores , Biópsia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Retículo Endoplasmático/ultraestrutura , Expressão Gênica , Imuno-Histoquímica , Testes de Função Hepática , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/patologia , Nutrientes , Oxirredução , Estresse Oxidativo , Suínos , Ultrassonografia
4.
Food Funct ; 11(2): 1312-1321, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32022057

RESUMO

Over the past decades, substantial advances have been made in both the early diagnosis and accurate prognosis of numerous cancers because of the impressive development of novel proteomic strategies. Selenium (Se) is an essential trace element in humans and animals. Se deficiency could lead to Keshan disease in humans, mulberry heart disease in pigs and damage of tissues including cardiac injury, apoptosis in the liver, reduction in the immune responses in spleen and cerebral lesions in chickens. However, it is well know that plasma biomarkers are not specific and also show alterations in various diseases including those caused by Se deficiency. Therefore, new definition biomarkers are needed to improve disease surveillance and reduce unnecessary chicken losses due to Se deficiency. To identify new biomarkers for Se deficiency, we performed exploratory heart, liver, spleen, muscle, vein, and artery proteomic screens to further validate the biomarkers using Venn analysis, GO enrichment, heatmap analysis, and IPA analysis. Based on the bioinformatics methods mentioned above, we found that differentially expressed genes and proteins are enriched to the PI3K/AKT/mTOR signal pathway and insulin pathway. We further used western blot to detect the expression of proteins related to the two pathways. Results showed that the components of the PI3K/AKT/mTOR signal pathway were definitely decreased in heart, liver, spleen, muscle, vein and artery tissues in the Se deficient group. Expression IGF and IGFBP2 of the insulin pathway were differentially increased in the heart, liver, and spleen in Se deficient group samples and decreased in muscle and artery. In conclusion, 5 proteins, namely PI3K, AKT, mTOR, IGF, and IGFBP2, were differentially expressed, which could be potentially useful Se deficient biomarkers. In the present study, proteomic profiling was used to elucidate protein biomarkers that distinguished Se deficient samples from the controls, which might provide a new direction for the diagnosis and targeted treatment induced by Se deficiency in chickens.


Assuntos
Especificidade de Órgãos/fisiologia , Proteoma , Selênio , Transdução de Sinais/fisiologia , Animais , Apoptose/fisiologia , Biomarcadores , Galinhas , Proteoma/análise , Proteoma/química , Proteoma/metabolismo , Proteômica , Selênio/deficiência , Selênio/metabolismo
5.
PLoS One ; 13(10): e0205987, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30332478

RESUMO

BACKGROUND: Gestational hypothyroidism (G-HypoT) is one of the most common thyroid diseases in pregnant women. Human milk, which closely links the mother with infant, is an important factor to the infant health. Here, we analyzed the colostrum whey proteome of women with or without G-HypoT. METHODS AND RESULTS: Using high-mass accuracy and high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS), 1055 proteins were identified. Tandem Mass Tags (TMT) analysis identified differentially expressed proteins between G-HypoT and non-G-HypoT mothers. Of 44 proteins identified, 15 proteins were significantly increased in G-HypoT colostrum whey, while 29 were significantly decreased. Analysis revealed that enzymes involved in carbohydrate metabolism, and that reflect the metabolic activities in breastfeeding women, including fructose-1, 6-bisphosphatase 1, phosphoglycerate mutase 1 were down-regulated. Cell structural proteins, biomarkers of mammary integrity development, including Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and actin were lower in G-HypoT colostrum whey. However, immune protein fragments like Ig gamma-3 chain C region increased in G-HypoT colostrum whey. CONCLUSION: These results implied that G-HypoT may changed human colostrum whey protein in composition level, decreasing levels of metabolic proteins and cell-structure proteins, while increasing levels of immune-related proteins, which may compromise or reflect mothers' and infants' health.


Assuntos
Colostro/metabolismo , Hipotireoidismo/metabolismo , Proteoma/metabolismo , Soro do Leite/metabolismo , Adulto , Análise por Conglomerados , Feminino , Ontologia Genética , Humanos , Recém-Nascido , Gravidez , Mapas de Interação de Proteínas , Proteômica , Reprodutibilidade dos Testes , Proteínas do Soro do Leite/metabolismo
6.
Biol Trace Elem Res ; 176(2): 407-415, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27620890

RESUMO

Selenium deficiency is the major cause of exudative diathesis in chicks. Subcutaneous hemorrhage is one of the typical symptoms of the disease. However, the reason for the occurrence of blood exudation remains unknown. In the present study, the vascular smooth muscle cells (VSMCs) were isolated from 17-day-old broiler chick embryos. Cell viability, cell apoptosis, and intracellular reactive oxygen species level under different concentrations of selenium (0-0.9 µM) were investigated. The mRNA expression levels of 25 selenoproteins and apoptosis-related genes (p53, CytC, Caspase-3, Caspase-8, Bcl-2, and Bax) were also measured. Selenium deficiency significantly decreased cell viability and increased cell apoptosis (p < 0.05). Supplementation with selenium could alleviate these changes. In general, at all levels of selenium addition, Gpx1, Gpx3, Gpx4, SepW1, and Sep15 mRNAs were all highly expressed in VSMCs, whereas Gpx2, Dio1, SepN1, SelO, and SelPb were at lower levels. There was a high correlation between Gpx2, Gpx3, Gpx4, Dio1, Txnrd1, Txnrd2, and Txnrd3 gene expression. Additionally, Gpx3, Gpx4, Dio1, Txnrd1, Txnrd2, Txnrd3, SelS, and SelPb showed a strong negative correlation with pro-apoptotic gene Caspase-3 as well as a strong positive correlation with anti-apoptotic gene Bcl-2, especially SelI (r = 0.913 and r = 0.929, p < 0.01). These results suggest that selenium deficiency could induce VSMC apoptosis, and several selenoproteins may be involved in the development of apoptosis. Our findings provide information on the molecular mechanism of vascular injury by selenium deficiency.


Assuntos
Apoptose , Músculo Liso Vascular/citologia , Selênio/deficiência , Selenoproteínas/genética , Animais , Apoptose/genética , Sobrevivência Celular/genética , Embrião de Galinha , Galinhas , Relação Dose-Resposta a Droga , Masculino , Músculo Liso Vascular/metabolismo , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
7.
Biol Trace Elem Res ; 173(2): 501-13, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27025720

RESUMO

Selenium deficiency is known to cause cardiovascular diseases. However, the role of Se deficiency in causing oxidative damage and inflammation injury to the aorta vessels of chickens is not well known. In the present study, 180 1-day-old chickens were randomly divided into two groups, a low-Se group (L group) and a control-Se group (C group). The messenger RNA (mRNA) levels of 25 selenoproteins, the mRNA and protein expression levels of inflammatory cytokines (including NF-κB, TNF-α, COX-2, and PTGES), and the antioxidant levels in chicken aorta vessels were examined. The results showed that the mRNA levels of 25 selenoproteins and the activity of Gpx were decreased, while the mRNA and protein expression levels of inflammatory cytokines and the MDA content were increased by Se deficiency in chicken aorta vessels. The data from the present study indicated that Se deficiency decreases the expression of selenoproteins, reduces antioxidant function, and increases the expression of inflammatory factors in chicken aorta vessels.


Assuntos
Aorta/metabolismo , Proteínas Aviárias/biossíntese , Citocinas/biossíntese , Regulação da Expressão Gênica , Mediadores da Inflamação/metabolismo , Selênio/deficiência , Selenoproteínas/biossíntese , Animais , Aorta/patologia , Galinhas , Feminino , Masculino
8.
Biol Trace Elem Res ; 170(2): 449-58, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26315306

RESUMO

Selenoprotein M (SelM) may function as thiol disulfide oxidoreductase that participates in the formation of disulfide bonds and can be implicated in calcium responses. SelM may have a functional role in catalyzing free radicals and has been associated with Alzheimer's disease (AD). However, studies of SelM in chicken remain very limited. In this study, two groups of day-old broiler chicks (n = 40/group) were fed a corn-soy basal diet (BD, 13 µg Se/kg) and BD supplemented with Se (as sodium selenite) at 0.3 mg/kg. The brain was collected at 14, 21, 28, and 42 days of age. We performed a sequence analysis and predicted the structure and function of SelM. We also investigated the effects of Se deficiency on the expression of Selt, Selw, and Selm and the Se status in the chicken brain. The results show that Se deficiency induced the lower (P < 0.05) Se content, glutathione peroxidase (GPx), and catalase (CAT) activities; increased (P < 0.05) malondialdehyde (MDA) content; and reduced (P < 0.05) the expression of Selm messenger RNA (mRNA) and protein abundance of SelM in the brain. However, there were no significant brain Selt and Selw mRNA levels by dietary Se deficiency in chicks. The different regulations of these three redox (Rdx) protein expressions by Se deficiency represent a novel finding of the present study. Our results demonstrated that SelM may have an important role in protecting against oxidative damage in the brain of chicken, which might shed light on the role of SelM in human neurodegenerative disease. More studies are needed to confirm our conclusion.


Assuntos
Proteínas Aviárias/biossíntese , Encéfalo/metabolismo , Galinhas/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Selênio/deficiência , Selenoproteínas/biossíntese , Animais , Humanos
9.
Biol Trace Elem Res ; 169(2): 211-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26109335

RESUMO

This study aims to investigate the effects of a tripeptide iron (REE-Fe) on iron-deficiency anemia rats. Sprague-Dawley rats were randomly divided into seven groups: a normal control group, an iron-deficiency control group, and iron-deficiency groups treated with ferrous sulfate (FeSO4), ferrous glycinate (Fe-Gly), or REE-Fe at low-, medium-, or high-dose groups. The rats in the iron-deficiency groups were fed on an iron-deficient diet to establish iron-deficiency anemia (IDA) model. After the model established, different iron supplements were given to the rats once a day by intragastric administration for 21 days. The results showed that REE-Fe had effective restorative action returning body weight, organ coefficients, and hematological parameters in IDA rats to normal level. In addition, comparing with FeSO4 or Fe-Gly, high-dose REE-Fe was more effective on improving the levels of renal coefficient, total iron-binding capacity, and transferrin. Furthermore, the liver hepcidin messenger RNA (mRNA) expression in the high-dose group was significantly higher (p < 0.05) than that in the FeSO4 or Fe-Gly group and showed no significant difference (p > 0.05) with the normal control group. The findings suggest that REE-Fe is an effective source of iron supplement for IDA rats and might be exploited as a new iron fortifier.


Assuntos
Anemia Ferropriva/tratamento farmacológico , Compostos Ferrosos/uso terapêutico , Glicina/análogos & derivados , Ferro/sangue , Oligopeptídeos/uso terapêutico , Administração Oral , Anemia Ferropriva/sangue , Animais , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Compostos Ferrosos/administração & dosagem , Glicina/administração & dosagem , Glicina/uso terapêutico , Hematócrito , Hemoglobinas/análise , Hepcidinas/metabolismo , Masculino , Oligopeptídeos/administração & dosagem , Ratos Sprague-Dawley
10.
J Nutr ; 141(9): 1754-61, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21775527

RESUMO

Selenium (Se), in the form of selenoproteins, imparts many health benefits with antiinflammatory properties. Previous studies have shown that Se supplementation of macrophages negatively regulates the LPS-dependent production of inducible NO synthase (iNOS), a proinflammatory gene. Therefore, we hypothesized that l-arginine, a substrate for iNOS, is acted upon by arginase-I (Arg-I), contributing to the resolution of inflammation. We investigated the antiinflammatory activity of Se using LPS and IL-4-treated C57BL/6 murine bone marrow-derived macrophages (BMDM) from mice fed Se-deficient and Se-adequate diets. Supplementation with Se (100 nmol/L) of IL-4-treated macrophages significantly increased the expression of alternatively activated macrophage (M2) markers, Arg-I, Fizz1, and Mrc-1. Se treatment also increased the enzymatic activity of Arg-I and surface expression of Mrc-1. Conversely, expression of classically activated macrophage (M1) markers, TNFα, and IL-1ß, was significantly decreased in LPS-treated macrophages that were cultured in Se and IL-4, suggesting a synergistic effect between Se and IL-4. Additionally, Arg-I activity was decreased in BMDM harvested from glutathione peroxidase (GPX) knockout mice compared to GPX wild-type mice, further establishing an important role for selenoproteins. Furthermore, BMDM treated with inhibitors of PPARγ and STAT6, pivotal transcription factors that mediate the activity of Se and IL-4, respectively, showed complete ablation of Se-dependent expression of M2 markers. In summary, these studies suggest that Se supplementation of macrophages produces endogenous activators to mediate the PPARγ-dependent switch from M1 to M2 phenotype in the presence of IL-4, possibly affecting pathways of wound healing and inflammation resolution.


Assuntos
Biomarcadores , Citocinas/metabolismo , Interleucina-4/farmacologia , Ativação de Macrófagos/fisiologia , Macrófagos/efeitos dos fármacos , Selênio/sangue , Animais , Arginase/genética , Arginase/metabolismo , Linhagem Celular , Citocinas/genética , Dieta , Expressão Gênica , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Inflamação/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Selenoproteínas/genética , Selenoproteínas/metabolismo , Glutationa Peroxidase GPX1
11.
Meat Sci ; 87(2): 95-100, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20558011

RESUMO

To study the effect of selenium-enriched yeast (SeY) level on selenoprotein genes expression and the relation between gene expression and antioxidant status and meat quality, 30 selenium (Se)-depleted pigs (7-week old, 10.30±0.68 kg) were randomly divided into 3 groups and fed a basal diet plus 0, 0.3 and 3.0 mg Se/kg as SeY for 8 weeks. Results showed that dietary SeY supplementation improved the antioxidant status in muscle. The increased levels of SeY decreased (P<0.05) the drip loss and the concentration of thiobarbituric acid reactive substances in the muscle and meat. However, increased dietary SeY intake quadratically increased (P<0.01) the mRNA level of Sepw1 gene among the 12 selenoprotein genes examined in muscle. Statistical analysis showed drip loss was negatively correlated with the mRNA level of Sepw1 gene. These suggested that the enhanced water-holding capacity of meat was associated with the increased expression of Sepw1 gene.


Assuntos
Antioxidantes/farmacologia , Suplementos Nutricionais , Expressão Gênica/efeitos dos fármacos , Carne/análise , Selênio/farmacologia , Selenoproteína W/metabolismo , Leveduras , Animais , Tecnologia de Alimentos , Músculo Esquelético/metabolismo , RNA Mensageiro/metabolismo , Selenoproteína W/genética , Suínos/metabolismo , Água
12.
J Agric Food Chem ; 57(12): 5250-6, 2009 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-19480386

RESUMO

Prebiotics may enhance iron bioavailability by increasing iron absorption in the colon. Anemic pigs fitted with cecal cannulas were fed a low-iron diet with or without 4% inulin. Over 7 days, pigs were administered 1 mg of (54)Fe in the morning feed followed by cannula infusion of 0.5 mg of (58)Fe to measure total and colonic iron absorption, respectively. Whole blood was drawn prior to the initial dosing and 14 days thereafter for hemoglobin concentration and stable isotope ratio analyses. The prebiotic role of inulin was confirmed by increases in lactobacilli and bifidobacteria with reductions in clostridia using terminal restriction fragment length polymorphism (TRFLP). Total iron absorption was 23.2 +/- 2.7 and 20.7 +/- 3.5% (mean +/- SEM; p > 0.05), while colonic iron absorption was 0.4 +/- 0.1 and 1.0 +/- 0.2% (mean +/- SEM; p > 0.05) in inulin-fed and control pigs, respectively. These results show that the colon does not make a significant contribution to total iron absorption in iron-deficient pigs and that inulin does not affect iron absorption in the colon.


Assuntos
Anemia Ferropriva/dietoterapia , Colo/metabolismo , Suplementos Nutricionais , Absorção Intestinal , Inulina/farmacocinética , Ferro/farmacocinética , Anemia Ferropriva/tratamento farmacológico , Anemia Ferropriva/metabolismo , Animais , Humanos , Inulina/administração & dosagem , Ferro/administração & dosagem , Masculino , Modelos Animais , Distribuição Aleatória , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA