Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Med Microbiol ; 310(1): 151359, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31585716

RESUMO

Allicin (diallylthiosulfinate) is a potent antimicrobial substance, produced by garlic tissues upon wounding as a defence against pathogens and pests. Allicin is a reactive sulfur species (RSS) that oxidizes accessible cysteines in glutathione and proteins. We used a differential isotopic labelling method (OxICAT) to identify allicin targets in the bacterial proteome. We compared the proteomes of allicin-susceptible Pseudomonas fluorescens Pf0-1 and allicin-tolerant PfAR-1 after a sublethal allicin exposure. Before exposure to allicin, proteins were in a predominantly reduced state, with approximately 77% of proteins showing less than 20% cysteine oxidation. Protein oxidation increased after exposure to allicin, and only 50% of proteins from allicin-susceptible Pf0-1, but 65% from allicin-tolerant PfAR-1, remained less than 20% oxidised. DNA gyrase was identified as an allicin target. Cys433 in DNA gyrase subunit A (GyrA) was approximately 6% oxidized in untreated bacteria. After allicin treatment the degree of Cys433 oxidation increased to 55% in susceptible Pf0-1 but only to 10% in tolerant PfAR-1. Allicin inhibited E. coli DNA gyrase activity in vitro in the same concentration range as nalidixic acid. Purified PfAR-1 DNA gyrase was inhibited to greater extent by allicin in vitro than the Pf0-1 enzyme. Substituting PfAR-1 GyrA into Pf0-1 rendered the exchange mutants more susceptible to allicin than the Pf0-1 wild type. Taken together, these results suggest that GyrA was protected from oxidation in vivo in the allicin-tolerant PfAR-1 background, rather than the PfAR-1 GyrA subunit being intrinsically less susceptible to oxidation by allicin than the Pf0-1 GyrA subunit. DNA gyrase is a target for medicinally important antibiotics; thus, allicin and its analogues may have potential to be developed as gyrase inhibitors, either alone or in conjunction with other therapeutics.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , DNA Girase/metabolismo , Alho/química , Ácidos Sulfínicos/farmacologia , Inibidores da Topoisomerase II/farmacologia , Bactérias/enzimologia , Cisteína/metabolismo , DNA Girase/genética , Dissulfetos , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Oxirredução , Proteoma , Pseudomonas fluorescens/efeitos dos fármacos
2.
J Biol Chem ; 291(22): 11477-90, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27008862

RESUMO

Allicin (diallyl thiosulfinate) from garlic is a highly potent natural antimicrobial substance. It inhibits growth of a variety of microorganisms, among them antibiotic-resistant strains. However, the precise mode of action of allicin is unknown. Here, we show that growth inhibition of Escherichia coli during allicin exposure coincides with a depletion of the glutathione pool and S-allylmercapto modification of proteins, resulting in overall decreased total sulfhydryl levels. This is accompanied by the induction of the oxidative and heat stress response. We identified and quantified the allicin-induced modification S-allylmercaptocysteine for a set of cytoplasmic proteins by using a combination of label-free mass spectrometry and differential isotope-coded affinity tag labeling of reduced and oxidized thiol residues. Activity of isocitrate lyase AceA, an S-allylmercapto-modified candidate protein, is largely inhibited by allicin treatment in vivo Allicin-induced protein modifications trigger protein aggregation, which largely stabilizes RpoH and thereby induces the heat stress response. At sublethal concentrations, the heat stress response is crucial to overcome allicin stress. Our results indicate that the mode of action of allicin is a combination of a decrease of glutathione levels, unfolding stress, and inactivation of crucial metabolic enzymes through S-allylmercapto modification of cysteines.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Extratos Vegetais/farmacologia , Compostos de Sulfidrila/metabolismo , Ácidos Sulfínicos/farmacologia , Cisteína/metabolismo , Dissulfetos , Escherichia coli/metabolismo , Alho/química , Glutationa/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA