Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Pediatr Nephrol ; 38(9): 3163-3181, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36786859

RESUMO

BACKGROUND: Infants with chronic kidney disease (CKD) form a vulnerable population who are highly prone to mineral and bone disorders (MBD) including biochemical abnormalities, growth retardation, bone deformities, and fractures. We present a position paper on the diagnosis and management of CKD-MBD in infants based on available evidence and the opinion of experts from the European Society for Paediatric Nephrology (ESPN) CKD-MBD and Dialysis working groups and the Pediatric Renal Nutrition Taskforce. METHODS: PICO (Patient, Intervention, Comparator, Outcomes) questions were generated, and relevant literature searches performed covering a population of infants below 2 years of age with CKD stages 2-5 or on dialysis. Clinical practice points (CPPs) were developed and leveled using the American Academy of Pediatrics grading matrix. A Delphi consensus approach was followed. RESULTS: We present 34 CPPs for diagnosis and management of CKD-MBD in infants, including dietary control of calcium and phosphate, and medications to prevent and treat CKD-MBD (native and active vitamin D, calcium supplementation, phosphate binders). CONCLUSION: As there are few high-quality studies in this field, the strength of most statements is weak to moderate, and may need to be adapted to individual patient needs by the treating physician. Research recommendations to study key outcome measures in this unique population are suggested. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Doenças Ósseas , Distúrbio Mineral e Ósseo na Doença Renal Crônica , Nefrologia , Insuficiência Renal Crônica , Lactente , Humanos , Criança , Distúrbio Mineral e Ósseo na Doença Renal Crônica/diagnóstico , Distúrbio Mineral e Ósseo na Doença Renal Crônica/etiologia , Distúrbio Mineral e Ósseo na Doença Renal Crônica/terapia , Cálcio/uso terapêutico , Diálise Renal/efeitos adversos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/terapia , Fosfatos , Minerais
2.
Pediatr Nephrol ; 37(10): 2289-2302, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35352187

RESUMO

Here, we discuss the management of different forms of rickets, including new therapeutic approaches based on recent guidelines. Management includes close monitoring of growth, the degree of leg bowing, bone pain, serum phosphate, calcium, alkaline phosphatase as a surrogate marker of osteoblast activity and thus degree of rickets, parathyroid hormone, 25-hydroxyvitamin D3, and calciuria. An adequate calcium intake and normal 25-hydroxyvitamin D3 levels should be assured in all patients. Children with calcipenic rickets require the supplementation or pharmacological treatment with native or active vitamin D depending on the underlying pathophysiology. Treatment of phosphopenic rickets depends on the underlying pathophysiology. Fibroblast-growth factor 23 (FGF23)-associated hypophosphatemic rickets was historically treated with frequent doses of oral phosphate salts in combination with active vitamin D, whereas tumor-induced osteomalacia (TIO) should primarily undergo tumor resection, if possible. Burosumab, a fully humanized FGF23-antibody, was recently approved for treatment of X-linked hypophosphatemia (XLH) and TIO and shown to be superior for treatment of XLH compared to conventional treatment. Forms of hypophosphatemic rickets independent of FGF23 due to genetic defects of renal tubular phosphate reabsorption are treated with oral phosphate only, since they are associated with excessive 1,25-dihydroxyvitamin D production. Finally, forms of hypophosphatemic rickets caused by Fanconi syndrome, such as nephropathic cystinosis and Dent disease require disease-specific treatment in addition to phosphate supplements and active vitamin D. Adjustment of medication should be done with consideration of treatment-associated side effects, including diarrhea, gastrointestinal discomfort, hypercalciuria, secondary hyperparathyroidism, and development of nephrocalcinosis or nephrolithiasis.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Síndrome de Fanconi , Raquitismo Hipofosfatêmico , Raquitismo , Cálcio/uso terapêutico , Criança , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Raquitismo Hipofosfatêmico Familiar/genética , Fatores de Crescimento de Fibroblastos , Humanos , Osteomalacia , Síndromes Paraneoplásicas , Fosfatos , Raquitismo/tratamento farmacológico , Raquitismo/etiologia , Raquitismo Hipofosfatêmico/tratamento farmacológico , Raquitismo Hipofosfatêmico/etiologia , Vitamina D/uso terapêutico
3.
Cells ; 11(1)2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35011732

RESUMO

Cystinosis Metabolic Bone Disease (CMBD) has emerged during the last decade as a well-recognized, long-term complication in patients suffering from infantile nephropathic cystinosis (INC), resulting in significant morbidity and impaired quality of life in teenagers and adults with INC. Its underlying pathophysiology is complex and multifactorial, associating complementary, albeit distinct entities, in addition to ordinary mineral and bone disorders observed in other types of chronic kidney disease. Amongst these long-term consequences are renal Fanconi syndrome, hypophosphatemic rickets, malnutrition, hormonal abnormalities, muscular impairment, and intrinsic cellular bone defects in bone cells, due to CTNS mutations. Recent research data in the field have demonstrated abnormal mineral regulation, intrinsic bone defects, cysteamine toxicity, muscle wasting and, likely interleukin-1-driven inflammation in the setting of CMBD. Here we summarize these new pathophysiological deregulations and discuss the crucial interplay between bone and muscle in INC. In future, vitamin D and/or biotherapies targeting the IL1ß pathway may improve muscle wasting and subsequently CMBD, but this remains to be proven.


Assuntos
Osso e Ossos/patologia , Cistinose/patologia , Músculos/patologia , Adipócitos/patologia , Biomarcadores/sangue , Cistinose/sangue , Humanos , Minerais/metabolismo
4.
Pediatr Nephrol ; 36(1): 41-50, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31858226

RESUMO

Complications of chronic kidney disease-associated mineral and bone disorders (CKD-MBD) are frequently observed in pediatric kidney transplant recipients and are associated with high morbidity, including growth failure, leg deformities, bone pain, fractures, osteonecrosis, and vascular calcification. Post-transplant CKD-MBD is mainly due to preexisting renal osteodystrophy and cardiovascular changes at the time of transplantation, glucocorticoid treatment, and reduced graft function. In addition, persistent elevated levels of parathyroid hormone (PTH) and fibroblast growth factor 23 may cause hypophosphatemia, resulting in impaired bone mineralization. Patient monitoring should include assessment of growth, leg deformities, and serum levels of calcium, phosphate, magnesium, alkaline phosphatase, 25-hydroxyvitamin D, and PTH. Therapy should primarily focus on regular physical activity, preservation of transplant function, and steroid-sparing immunosuppressive protocols. In addition, adequate monitoring and treatment of vitamin D and mineral metabolism including vitamin D supplementation, oral phosphate, and/or magnesium supplementation, in case of persistent hypophosphatemia/hypomagnesemia, and treatment with active vitamin D in cases of persistent secondary hyperparathyroidism. The latter should be done using the minimum PTH-suppressive dosages aiming at the recommended CKD stage-dependent PTH target range. Finally, treatment with recombinant human growth hormone should be considered in patients lacking catch-up growth within the first year after transplantation.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica , Transplante de Rim , Distúrbio Mineral e Ósseo na Doença Renal Crônica/tratamento farmacológico , Distúrbio Mineral e Ósseo na Doença Renal Crônica/etiologia , Fator de Crescimento de Fibroblastos 23 , Humanos , Hipofosfatemia , Transplante de Rim/efeitos adversos , Magnésio , Hormônio Paratireóideo , Fosfatos , Vitamina D
5.
Toxins (Basel) ; 11(11)2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698866

RESUMO

Elevated levels of fibroblast growth factor 23 (FGF23) and phosphate are highly associated with increased cardiovascular disease and mortality in patients suffering from chronic kidney disease (CKD). As the kidney function declines, serum phosphate levels rise and subsequently induce the secretion of the phosphaturic hormone FGF23. In early stages of CKD, FGF23 prevents the increase of serum phosphate levels and thereby attenuates phosphate-induced vascular calcification, whereas in end-stage kidney disease, FGF23 fails to maintain phosphate homeostasis. Both hyperphosphatemia and elevated FGF23 levels promote the development of hypertension, vascular calcification, and left ventricular hypertrophy by distinct mechanisms. Therefore, FGF23 and phosphate are considered promising therapeutic targets to improve the cardiovascular outcome in CKD patients. Previous therapeutic strategies are based on dietary and pharmacological reduction of serum phosphate, and consequently FGF23 levels. However, clinical trials proving the effects on the cardiovascular outcome are lacking. Recent publications provide evidence for new promising therapeutic interventions, such as magnesium supplementation and direct targeting of phosphate and FGF receptors to prevent toxicity of FGF23 and hyperphosphatemia in CKD patients.


Assuntos
Fatores de Crescimento de Fibroblastos/sangue , Hipertensão/sangue , Hipertrofia Ventricular Esquerda/sangue , Fosfatos/sangue , Insuficiência Renal Crônica/sangue , Calcificação Vascular/sangue , Progressão da Doença , Fator de Crescimento de Fibroblastos 23 , Homeostase , Humanos , Hipertensão/etiologia , Hipertrofia Ventricular Esquerda/etiologia , Insuficiência Renal Crônica/complicações , Calcificação Vascular/etiologia
6.
Nephrol Dial Transplant ; 33(12): 2208-2217, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29481636

RESUMO

Background: We investigated the effects of nutritional vitamin D supplementation on markers of bone and mineral metabolism, i.e. serum levels of fibroblast growth factor 23 (FGF23), Klotho, bone alkaline phosphatase (BAP) and sclerostin, in two cohorts with chronic kidney disease (CKD). Methods: In all, 80 vitamin D-deficient children were selected: 40 with mild to moderate CKD from the ERGO study, a randomized trial of ergocalciferol supplementation [estimated glomerular filtration rate (eGFR) 55 mL/min/1.73 m2], and 40 with advanced CKD from the observational Cardiovascular Comorbidity in Children with Chronic Kidney Disease (4C) study (eGFR 24 mL/min/1.73 m2). In each study, vitamin D supplementation was started in 20 children and 20 matched children not receiving vitamin D served as controls. Measures were taken at baseline and after a median period of 8 months. Age- and gender-related standard deviation scores (SDSs) were calculated. Results: Before vitamin D supplementation, children in the ERGO study had normal FGF23 (median 0.31 SDS) and BAP (-0.10 SDS) but decreased Klotho and sclerostin (-0.77 and -1.04 SDS, respectively), whereas 4C patients had increased FGF23 (3.87 SDS), BAP (0.78 SDS) and sclerostin (0.76 SDS) but normal Klotho (-0.27 SDS) levels. Vitamin D supplementation further increased FGF23 in 4C but not in ERGO patients. Serum Klotho and sclerostin normalized with vitamin D supplementation in ERGO but remained unchanged in 4C patients. BAP levels were unchanged in all patients. In the total cohort, significant effects of vitamin D supplementation were noted for Klotho at eGFR 40-70 mL/min/1.73 m2. Conclusions: Vitamin D supplementation normalized Klotho and sclerostin in children with mild to moderate CKD but further increased FGF23 in advanced CKD.


Assuntos
Fosfatase Alcalina/sangue , Densidade Óssea/fisiologia , Suplementos Nutricionais , Fatores de Crescimento de Fibroblastos/sangue , Insuficiência Renal Crônica/terapia , Vitamina D/administração & dosagem , Adolescente , Biomarcadores/metabolismo , Criança , Método Duplo-Cego , Feminino , Fator de Crescimento de Fibroblastos 23 , Seguimentos , Taxa de Filtração Glomerular , Humanos , Masculino , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Vitaminas/administração & dosagem
7.
Bone ; 103: 224-232, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28728941

RESUMO

X-linked hypophosphatemia (XLH) caused by mutations in the Phex gene is the most common human inherited phosphate wasting disorder characterized by enhanced synthesis of fibroblast growth factor 23 (FGF23) in bone, renal phosphate wasting, 1,25(OH)2D3 (1,25D) deficiency, rickets and osteomalacia. Here we studied the effects of calcimimetic R568 and calcitriol treatment in the Hyp mouse, a murine homolog of XLH. We hypothesized that mineral homeostasis is differentially affected by R568 and 1,25D with respect to the PTH-vitamin D-FGF23-Klotho axis and bone health. Four-week-old male Hyp mice received R568 in different doses, 1,25D or vehicle for 28days. Vehicle-treated wild-type mice served as controls. Both R568 and 1,25D reduced PTH levels, yet only 1,25D raised serum phosphate levels in Hyp mice. 1,25D increased calciuria and further enhanced FGF23 synthesis in bone and circulating FGF23 levels. By contrast, R568 reduced bone FGF23 expression and serum total but not intact FGF23 concentrations. Renal 1,25D metabolism was further impaired by 1,25D and improved although not normalized by R568. Hyp mice showed reduced renal Klotho levels, which were increased by 1,25D and high dose R568. 1,25D, but not R568, significantly improved femur growth, and weight gain, and partially restored growth plate morphology and bone mineralization. Although a significant improvement of trabecular bone was noted by µCT, compared to 1,25D the effects of R568 on bone histomophometric parameters were marginal. Our data indicate that monotherapy with R568 reduced PTH and FGF23 synthesis in bone, but failed to restore vitamin D and phosphate metabolism and skeletal abnormalities in Hyp mice. By contrast, 1,25D improved body growth, and defective mineralization despite further enhancement of skeletal FGF23 synthesis thereby highlighting the importance of vitamin D in bone mineralization in Hyp mice.


Assuntos
Osso e Ossos/efeitos dos fármacos , Calcitriol/farmacologia , Raquitismo Hipofosfatêmico Familiar , Fenetilaminas/farmacologia , Propilaminas/farmacologia , Animais , Raquitismo Hipofosfatêmico Familiar/metabolismo , Raquitismo Hipofosfatêmico Familiar/patologia , Fator de Crescimento de Fibroblastos 23 , Homeostase/efeitos dos fármacos , Masculino , Camundongos , Vitaminas/farmacologia
8.
Nephrol Dial Transplant ; 32(9): 1493-1503, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28339837

RESUMO

BACKGROUND: Vitamin D deficiency and excess of circulating fibroblast growth factor 23 (FGF23) contribute to cardiovascular mortality in patients with chronic kidney disease (CKD). FGF23 activates FGF receptor 4 and (FGFR4) calcineurin/nuclear factor of activated T cells (NFAT) signaling in cardiac myocytes, thereby causing left ventricular hypertrophy (LVH). Here, we determined if 1,25-dihydroxyvitamin D (calcitriol) inhibits FGF23-induced cardiac signaling and LVH. METHODS: 5/6 nephrectomized (5/6 Nx) rats were treated with different doses of calcitriol for 4 or 10 weeks and cardiac expression of FGF23/FGFR4 and activation of calcineurin/NFAT as well as LVH were analyzed. FGFR4 activation and hypertrophic cell growth were studied in cultured cardiac myocytes that were co-treated with FGF23 and calcitriol. RESULTS: In 5/6Nx rats with LVH, we detected elevated FGF23 expression in bone and myocardium, increased cardiac expression of FGFR4 and elevated cardiac activation of calcineurin/NFAT signaling. Cardiac expression levels of FGF23 and FGFR4 significantly correlated with the presence of LVH in uremic rats. Treatment with calcitriol reduced LVH as well as cardiac FGFR4 expression and calcineurin/NFAT activation. Bone and cardiac FGF23 expression were further stimulated by calcitriol in a dose-dependent manner, but levels of intact cardiac FGF23 protein were suppressed by high-dose calcitriol. In cultured cardiac myocytes, co-treatment with calcitriol blocked FGF23-induced activation of FGFR4 and hypertrophic cell growth. CONCLUSIONS: Our data suggest that in CKD, cardioprotective effects of calcitriol stem from its inhibitory actions on the cardiac FGF23/FGFR4 system, and based on their counterbalancing effects on cardiac myocytes, high FGF23 and low calcitriol synergistically contribute to cardiac hypertrophy.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Hipertrofia Ventricular Esquerda/prevenção & controle , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Insuficiência Renal Crônica/complicações , Vitamina D/administração & dosagem , Animais , Fator de Crescimento de Fibroblastos 23 , Humanos , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Vitaminas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA