Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 13(6): e0197808, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856782

RESUMO

INTRODUCTION: The pro-inflammatory status of cystic fibrosis (CF) patients promotes pulmonary colonization with opportunist and pathogenic bacteria, which is favored by a sticky mucus. Oral supplementation with (n-3) long chain polyunsaturated fatty acids (LC-PUFA) has shown anti-inflammatory effects. The aim of this study was to demonstrate the positive effects of a long-term diet enriched in (n-3) LC-PUFA on the lungs of Cftr F508del mice. MATERIALS AND METHODS: Breeding CftrΔF508del/+ mice received a control diet or a diet enriched in (n-3) LC-PUFA for 5 weeks before mating, gestation and lactation. After weaning, the offspring were given the same diet as their mother until post-natal day 60. The effects of (n-3) LC-PUFA supplementation on the lungs were evaluated in homozygous Cftr F508del mice and their wild-type littermates after acute lung inflammation induced by Pseudomonas aeruginosa lipopolysaccharide (LPS) inhalation. RESULTS: (n-3) LC-PUFA enrichment of mothers contributes to enrichment of mammary milk and cell membrane of suckling pups. Cftr F508del mice exhibited growth retardation and lung damage with collapsed alveoli, hyperplasia of bronchial epithelial cells and inflammatory cell infiltration. The (n-3) LC-PUFA diet corrected the growth delay of Cftr F508del mice and decreased hyperplasia of bronchial epithelial cells. Besides decreasing metaplasia of Club cells after LPS inhalation, (n-3) LC-PUFA modulated lung inflammation and restricted lung damage. CONCLUSION: Long-term (n-3) LC-PUFA supplementation shows moderate benefits to the lungs of Cftr F508del mice.


Assuntos
Dieta , Ácidos Graxos Ômega-3/farmacologia , Pulmão/efeitos dos fármacos , Animais , Transporte Biológico , Suplementos Nutricionais , Ácidos Graxos Ômega-3/metabolismo , Feminino , Crescimento e Desenvolvimento/efeitos dos fármacos , Pulmão/citologia , Pulmão/metabolismo , Masculino , Camundongos , Fatores de Tempo
2.
Plant J ; 76(1): 61-72, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23802881

RESUMO

A paradigm regarding rhamnogalacturonans II (RGII) is their strictly conserved structure within a given plant. We developed and employed a fast structural characterization method based on chromatography and mass spectrometry, allowing analysis of RGII side chains from microgram amounts of cell wall. We found that RGII structures are much more diverse than so far described. In chain A of wild-type plants, up to 45% of the l-fucose is substituted by l-galactose, a state that is seemingly uncorrelated with RGII dimerization capacity. This led us to completely reinvestigate RGII structures of the Arabidopsis thaliana fucose-deficient mutant mur1, which provided insights into RGII chain A biosynthesis, and suggested that chain A truncation, rather than l-fucose to l-galactose substitution, is responsible for the mur1 dwarf phenotype. Mass spectrometry data for chain A coupled with NMR analysis revealed a high degree of methyl esterification of its glucuronic acid, providing a plausible explanation for the puzzling RGII antibody recognition. The ß-galacturonic acid of chain A exhibits up to two methyl etherifications in an organ-specific manner. Combined with variation in the length of side chain B, this gives rise to a family of RGII structures instead of the unique structure described up to now. These findings pave the way for studies on the physiological roles of modulation of RGII composition.


Assuntos
Arabidopsis/química , Galactose/química , Pectinas/química , Folhas de Planta/química , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/fisiologia , Parede Celular/metabolismo , Cromatografia Líquida , Fucose/análise , Fucose/metabolismo , Galactose/análise , Ácidos Hexurônicos , Monossacarídeos/química , Mutação , Especificidade de Órgãos , Pectinas/genética , Pectinas/metabolismo , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Espectrometria de Massas por Ionização por Electrospray
3.
J Biol Chem ; 286(46): 39982-92, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21949134

RESUMO

UDP-glucose dehydrogenase (UGD) plays a key role in the nucleotide sugar biosynthetic pathway, as its product UDP-glucuronic acid is the common precursor for arabinose, xylose, galacturonic acid, and apiose residues found in the cell wall. In this study we characterize an Arabidopsis thaliana double mutant ugd2,3 that lacks two of the four UGD isoforms. This mutant was obtained from a cross of ugd2 and ugd3 single mutants, which do not show phenotypical differences compared with the WT. In contrast, ugd2,3 has a strong dwarfed phenotype and often develops seedlings with severe root defects suggesting that the UGD2 and UGD3 isoforms act in concert. Differences in its cell wall composition in comparison to the WT were determined using biochemical methods indicating a significant reduction in arabinose, xylose, apiose, and galacturonic acid residues. Xyloglucan is less substituted with xylose, and pectins have a reduced amount of arabinan side chains. In particular, the amount of the apiose containing side chains A and B of rhamnogalacturonan II is strongly reduced, resulting in a swollen cell wall. The alternative pathway to UDP-glucuronic acid with the key enzyme myo-inositol oxygenase is not up-regulated in ugd2,3. The pathway also does not complement the ugd2,3 mutation, likely because the supply of myo-inositol is limited. Taken together, the presented data underline the importance of UDP GlcA for plant primary cell wall formation.


Assuntos
Arabidopsis/metabolismo , Parede Celular/metabolismo , Regulação para Baixo , Pectinas/biossíntese , Uridina Difosfato Ácido Glucurônico/biossíntese , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/genética , Mutação , Pectinas/genética , Uridina Difosfato Glucose Desidrogenase/genética , Uridina Difosfato Glucose Desidrogenase/metabolismo , Uridina Difosfato Ácido Glucurônico/genética
4.
J Biol Chem ; 285(35): 27192-27200, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20576600

RESUMO

Art v 1, the major pollen allergen of the composite plant mugwort (Artemisia vulgaris) has been identified recently as a thionin-like protein with a bulky arabinogalactan-protein moiety. A close relative of mugwort, ragweed (Ambrosia artemisiifolia) is an important allergen source in North America, and, since 1990, ragweed has become a growing health concern in Europe as well. Weed pollen-sensitized patients demonstrated IgE reactivity to a ragweed pollen protein of apparently 29-31 kDa. This reaction could be inhibited by the mugwort allergen Art v 1. The purified ragweed pollen protein consisted of a 57-amino acid-long defensin-like domain with high homology to Art v 1 and a C-terminal proline-rich domain. This part contained hydroxyproline-linked arabinogalactan chains with one galactose and 5 to 20 and more alpha-arabinofuranosyl residues with some beta-arabinoses in terminal positions as revealed by high field NMR. The ragweed protein contained only small amounts of the single hydroxyproline-linked beta-arabinosyl residues, which form an important IgE binding determinant in Art v 1. cDNA clones for this protein were obtained from ragweed flowers. Immunological characterization revealed that the recombinant ragweed protein reacted with >30% of the weed pollen allergic patients. Therefore, this protein from ragweed pollen constitutes a novel important ragweed allergen and has been designated Amb a 4.


Assuntos
Alérgenos/genética , Ambrosia/genética , Artemisia/genética , Proteínas de Plantas/genética , Pólen/imunologia , Rinite Alérgica Sazonal/imunologia , Alérgenos/química , Alérgenos/imunologia , Alérgenos/isolamento & purificação , Ambrosia/química , Ambrosia/imunologia , Antígenos de Plantas , Artemisia/química , Artemisia/imunologia , DNA Complementar/genética , DNA Complementar/imunologia , Europa (Continente)/epidemiologia , Galactanos/química , Galactanos/genética , Galactanos/imunologia , Humanos , Imunoglobulina E/imunologia , América do Norte/epidemiologia , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Proteínas de Plantas/isolamento & purificação , Pólen/química , Estrutura Terciária de Proteína , Rinite Alérgica Sazonal/epidemiologia , Homologia de Sequência de Aminoácidos
5.
J Allergy Clin Immunol ; 125(1): 184-90.e1, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19910026

RESUMO

BACKGROUND: Yellow jacket hyaluronidase (YJ-HYA) is considered a major allergen in yellow jacket allergy. It shows 50% homology with the hyaluronidase from honeybee venom, Api m 2. Recently, IgE binding to YJ-HYA and cross-reactivity with Api m 2 has been shown to be due to cross-reactive carbohydrate determinants (CCDs). OBJECTIVE: We sought to quantify the importance of YJ-HYA in yellow jacket allergy and the cross-reactivity with Api m 2 by discriminating between carbohydrate and peptide epitopes. METHODS: IgE binding to Vespula species venom was studied by means of Western blotting in 136 patients with yellow jacket allergy (31 in vitro single positive to yellow jacket venom and 105 in vitro double-positive to yellow jacket-honeybee). Inhibition studies were carried out with MUXF-BSA (isolated bromelain glycopeptides linked to bovine serum albumin) and purified Api m 2. RESULTS: Among yellow jacket single-positive sera, only 1 of 31 bound with YJ-HYA, whereas this was the case in 87% of 105 double-positive sera. Of 83 patients in whom inhibitions were performed, 65% reacted with hyaluronidase through CCDs alone, 27% reacted with both CCDs and peptide epitopes, and 8% reacted only with the hyaluronidase peptide. The protein-specific reactivity with YJ-HYA was cross-inhibited by Api m 2 in 48% (14/29). Antigen 5 and phospholipase A(1) were each recognized by around 90% of sera from both groups, together identifying 97% of patients. CONCLUSION: Hyaluronidase is a minor yellow jacket venom allergen, and only 10% to 15% of patients with yellow jacket allergy are estimated to have IgE against the hyaluronidase protein. Peptide-specific cross-reactivity with Api m 2 occurs in half of these sera. Component-resolved diagnosis with antigen 5 and phospholipase would detect virtually all patients with yellow jacket venom allergy.


Assuntos
Alérgenos , Hialuronoglucosaminidase , Hipersensibilidade Imediata , Mordeduras e Picadas de Insetos/imunologia , Venenos de Vespas/enzimologia , Vespas , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alérgenos/efeitos adversos , Alérgenos/imunologia , Animais , Antígenos de Plantas , Abelhas/imunologia , Criança , Reações Cruzadas , Feminino , Humanos , Hialuronoglucosaminidase/efeitos adversos , Hialuronoglucosaminidase/imunologia , Hipersensibilidade Imediata/etiologia , Hipersensibilidade Imediata/imunologia , Imunoglobulina E/sangue , Masculino , Pessoa de Meia-Idade , Venenos de Vespas/efeitos adversos , Venenos de Vespas/imunologia , Adulto Jovem
6.
Biol Chem ; 390(5-6): 445-51, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19361284

RESUMO

Artemisia vulgaris (mugwort) is one of the main causes of late summer pollinosis in Europe, with >95% of patients sensitized to the glycoallergen Art v 1. Despite the importance of this allergen, little is known about its cross-reactive behavior. Here we investigated the occurrence of conserved Art v 1 antigenic determinants in sources known to display clinically relevant cross-reactivity with mugwort pollen. For this purpose, monoclonal antibodies specific for a cysteine-stabilized epitope of the Art v 1 defensin domain and for carbohydrates attached to the proline domain were produced by hybridoma and phage display technologies. Using polyclonal Art v 1-specific rabbit sera and antibodies against both the Art v 1 carbohydrate and polypeptide moieties, we could identify cross-reactive structures in pollen from botanically related Asteraceae weeds (Artemisia absinthium, Helianthus annuus and Ambrosia sp.). Homologous allergens were also recognized by IgE from mugwort-sensitized patients and the reactivity could be decreased by serum pre-incubation with natural and recombinant Art v 1. As no cross-reactive structures could be found in foods associated with mugwort pollinosis, we conclude that Art v 1 is poorly involved in mugwort cross-reactivity to food allergens.


Assuntos
Alérgenos/química , Alérgenos/imunologia , Artemisia/imunologia , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Pólen/química , Pólen/imunologia , Alérgenos/genética , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Antígenos de Plantas , Reações Cruzadas , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Humanos , Hibridomas , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Biblioteca de Peptídeos , Proteínas de Plantas/genética , Pólen/genética , Processamento de Proteína Pós-Traducional , Coelhos
7.
J Biol Chem ; 280(9): 7932-40, 2005 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-15591314

RESUMO

Art v 1, the major allergen of mugwort (Artemisia vulgaris) pollen contains galactose and arabinose. As the sera of some allergic patients react with natural but not with recombinant Art v 1 produced in bacteria, the glycosylation of Art v 1 may play a role in IgE binding and human allergic reactions. Chemical and enzymatic degradation, mass spectrometry, and 800 MHz (1)H and (13)C nuclear magnetic resonance spectroscopy indicated the proline-rich domain to be glycosylated in two ways. We found a large hydroxyproline-linked arabinogalactan composed of a short beta1,6-galactan core, which is substituted by a variable number (5-28) of alpha-arabinofuranose residues, which form branched side chains with 5-, 2,5-, 3,5-, and 2,3,5-substituted arabinoses. Thus, the design of the Art v 1 polysaccharide differs from that of the well known type II arabinogalactans, and we suggest it be named type III arabinogalactan. The other type of glycosylation was formed by single (but adjacent) beta-arabinofuranoses linked to hydroxyproline. In contrast to the arabinosylation of Ser-Hyp(4) motifs in other hydroxyproline-rich glycoproteins, such as extensins or solanaceous lectins, no oligo-arabinosides were found in Art v 1. Art v 1 and parts thereof produced by alkaline degradation, chemical deglycosylation, proteolytic degradation, and/or digestion with alpha-arabinofuranosidase were used in enzyme-linked immunosorbent assay and immunoblot experiments with rabbit serum and with the sera of patients. Although we could not observe antibody binding by the polysaccharide, the single hydroxyproline-linked beta-arabinose residues appeared to react with the antibodies. Mono-beta-arabinosylated hydroxyproline residues thus constitute a new, potentially cross-reactive, carbohydrate determinant in plant proteins.


Assuntos
Alérgenos/química , Anticorpos/química , Proteínas de Plantas/química , Pólen/química , Polissacarídeos/química , Alérgenos/metabolismo , Antígenos de Plantas , Carboidratos/química , Carbono/química , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Galactanos/química , Ligação Genética , Glicopeptídeos/química , Glicoproteínas/química , Glicosilação , Hidroxiprolina/química , Immunoblotting , Imunoglobulina E/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Químicos , Proteínas de Plantas/metabolismo , Prolina/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
J Exp Bot ; 53(373): 1429-36, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12021290

RESUMO

alpha4-Fucosylation represents a final step of protein N- glycosylation. alpha4-fucosylated N-glycans are thought to be involved in cell-to-cell communication and recognition in primates and plants. Nevertheless, in the plant life cycle, the function of alpha4-fucosylation remains largely unknown. To gain an insight into the role of alpha4-fucosylation during development, the study focused on tobacco flowers. It is shown that an increase in alpha(1,4)fucosyltransferase (Fuc-T) activity is only observed during anther development, whereas it remains at a constant but low level (around 20 pmol Fuc h(-1) mg(-1) protein) in the gynoecium and perianth. At least a 4-fold higher activity is detected in mature pollen grains. These data suggest that alpha(1,4)Fuc-T activity is regulated during anther development. Furthermore, alpha(1,4)Fuc-T activity could be required during pollen tube elongation where the activity level peaks at 350 pmol h(-1) mg(-1) protein. Based on enzyme profile and cycloheximide effects on pollen germination and activity, it is hypothesized that the gene encoding alpha4-Fuc-T could be regulated late during pollen development. A potential role of alpha4- fucosylation during pollen tube elongation is also discussed.


Assuntos
Fucosiltransferases/metabolismo , Estruturas Vegetais/crescimento & desenvolvimento , Pólen/crescimento & desenvolvimento , Comunicação Celular/fisiologia , Cicloeximida/farmacologia , Ativação Enzimática , Glicosilação , Estruturas Vegetais/metabolismo , Pólen/efeitos dos fármacos , Reprodução/fisiologia , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA