Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Nat Med ; 78(3): 558-567, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38517622

RESUMO

A total of five new mexicanolides (1-5), namely alliaxylines A-E, together with two known limonoids 6 and 7, were isolated and identified from Dysoxylum alliaceum (Blume) Blume ex. A.Juss. (Meliaceae). The structures of these compounds were elucidated based on extensive spectroscopic analyses, including HR-ESI-MS, UV, IR, 1D, and 2D NMR, as well as theoretical stimulation of NMR shifts with the DP4 + algorithm. Consequently, this study aimed to examine cytotoxic activities of these compounds against MCF-7 and A549 cell lines. The results implied that compound 2 was the most potent against the two tested cells, with IC50 values of 34.95 ± 0.21 and 44.39 ± 1.03 µM.


Assuntos
Limoninas , Meliaceae , Casca de Planta , Humanos , Meliaceae/química , Casca de Planta/química , Limoninas/química , Limoninas/farmacologia , Limoninas/isolamento & purificação , Estrutura Molecular , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Células MCF-7 , Células A549 , Linhagem Celular Tumoral , Espectroscopia de Ressonância Magnética , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Caules de Planta/química
2.
Biol Trace Elem Res ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758980

RESUMO

Brown adipose tissue (BAT) and white adipose tissue (WAT) are known to regulate lipid metabolism. A lower amount of BAT compared to WAT, along with adipose tissue dysfunction, can result in obesity. Studies have shown that selenium supplementation protects against adipocyte dysfunction, decreases WAT triglycerides, and increases BAT triiodothyronine (T3). In this review, we discuss the relationship between selenium and lipid metabolism regulation through selenoprotein deiodinases and the role of deiodinases and thyroid hormones in the induction of adipose tissue thermogenesis. Upon 22 studies included in our review, we found that studies investigating the relationship between selenium and deiodinases demonstrated that selenium supplementation affects the iodothyronine deiodinase 2 (DIO2) protein and the expression of its associated gene, DIO2, proportionally. However, its effect on DIO1 is inconsistent while its effect on DIO3 activity is not detected. Studies have shown that the activity of deiodinases especially DIO2 protein and DIO2 gene expression is increased along with other browning markers upon white adipose tissue browning induction. Studies showed that thermogenesis is stimulated by the thyroid hormone T3 as its activity is correlated to the expression of other thermogenesis markers. A proposed mechanism of thermogenesis induction in selenium supplementation is by autophagy control. However, more studies are needed to establish the role of T3 and autophagy in adipose tissue thermogenesis, especially, since some studies have shown that thermogenesis can function even when T3 activity is lacking and studies related to autophagy in adipose tissue thermogenesis have contradictory results.

3.
Molecules ; 28(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37241725

RESUMO

Selenium (Se) is a trace mineral found in plants with a distinct sulfuric odor that is cardioprotective and reported to have low toxicity. West Java, Indonesia, has a variety of plants with a distinct odor that are consumed raw, such as jengkol (Archidendron pauciflorum). This study is conducted to determine the Se content of jengkol using the fluorometric method, where the jengkol extract is separated, and the Se content is detected using high-pressure liquid chromatography (HPLC), combined with fluorometry. Two fractions with the highest Se concentration (A and B) are found and characterized using liquid chromatography mass spectrometry to predict the organic Se content by comparing the results with those in the external literature. The Se content of fraction (A) is found to be selenomethionine (m/z 198), gamma glutamyl-methyl-selenocysteine-(GluMetSeCys; m/z 313), and the Se-sulfur (S) conjugate of cysteine-selenoglutathione (m/z 475). Furthermore, these compounds are docked on receptors involved in cardioprotection. The receptors are peroxisome proliferator-activated receptor-γ (PPAR-γ), nuclear factor kappa-B (NF-κB), and phosphoinositide 3-kinase (PI3K/AKT). The interaction of receptor and ligan that has the lowest binding energy of the docking simulation is measured with molecular dynamic simulation. MD is performed to observe bond stability and conformation based on root mean square deviation, root mean square fluctuation, radius gyration, and MM-PBSA parameters. The results of the MD simulation show that the stability of the complex organic Se compounds tested with the receptors is lower than that of the native ligand, while the binding energy is lower than that of the native ligand based on the MM-PSBA parameter. This indicates that the predicted organic Se in jengkol, i.e., gamma-GluMetSeCys to PPAR-γ, gamma-GluMetSeCys AKT/PI3K, and Se-S conjugate of cysteine-selenoglutathione to NF-κB, has the best interaction results and provides a cardioprotection effect, compared to the molecular interaction of the test ligands with the receptors.


Assuntos
NF-kappa B , Selênio , NF-kappa B/metabolismo , Selênio/química , Fosfatidilinositol 3-Quinases , PPAR gama/metabolismo , Cisteína/análise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligantes
4.
Cancer Manag Res ; 14: 3551-3565, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36583029

RESUMO

Introduction: Research in mice showed that vitamin D receptor deficiency was correlated with an increased rate of non-melanoma skin cancer. Therapeutic supplemental vitamin D has also been reported to reduce cell growth in both melanoma and non-melanoma skin cancer. This paper aims to describe the existing research studies that discuss the potential and role of vitamin D in the management of skin cancer. Methods: Articles were searched from three databases (PubMed, ScienceDirect, Scopus) and manual search. 18 articles were included. These were further divided into in vivo and in vitro studies. The literature search was based on the following Patients, Intervention, Control, and Outcome (PICO) criteria: Patients with any types of skin cancer; Vitamin D and their derivates as the intervention; placebo or standard regimen as control, and survival rate or response rate as primary outcome. Results: From the three databases, we obtained 802 studies. Prior to screening of the literature obtained, several studies were excluded. In the eligibility assessment, seven studies were excluded due to their outcomes being not eligible for analysis, and two studies were excluded due to inaccessible full texts. The remaining 18 studies were included. Five studies had a clinical research design (randomized controlled trial or interventional study), which use vitamin D3 as vitamin D derivatives and the results showed that the administration of vitamin D3 reduces the proliferation of skin cancer cells. Similar results were also reported in studies with pre-clinical research designs, either in vivo or in vitro, where six were in vivo studies and nine studies were in vitro studies. Conclusion: Our literature review revealed that that vitamin D derivatives, such as 1,25(OH)2D3 or 20(OH)D3 can effectively reduce the proliferation of skin cancer cells by contributing in the inhibition of cell growth and development, highlighting vitamin D's role as good prognostic factor.

5.
Nutrients ; 14(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36364820

RESUMO

The non-classical role of vitamin D has been investigated in recent decades. One of which is related to its role in skeletal muscle. Satellite cells are skeletal muscle stem cells that play a pivotal role in skeletal muscle growth and regeneration. This systematic review aims to investigate the effect of vitamin D on satellite cells. A systematic search was performed in Scopus, MEDLINE, and Google Scholar. In vivo studies assessing the effect of vitamin D on satellite cells, published in English in the last ten years were included. Thirteen in vivo studies were analyzed in this review. Vitamin D increases the proliferation of satellite cells in the early life period. In acute muscle injury, vitamin D deficiency reduces satellite cells differentiation. However, administering high doses of vitamin D impairs skeletal muscle regeneration. Vitamin D may maintain satellite cell quiescence and prevent spontaneous differentiation in aging. Supplementation of vitamin D ameliorates decreased satellite cells' function in chronic disease. Overall, evidence suggests that vitamin D affects satellite cells' function in maintaining skeletal muscle homeostasis. Further research is needed to determine the most appropriate dose of vitamin D supplementation in a specific condition for the optimum satellite cells' function.


Assuntos
Células Satélites de Músculo Esquelético , Vitamina D/farmacologia , Regeneração , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/fisiologia , Diferenciação Celular/fisiologia , Músculo Esquelético , Vitaminas/farmacologia
6.
Med Sci Monit Basic Res ; 28: e935139, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35642437

RESUMO

BACKGROUND Melanoma is one of the most aggressive types of cancer and it has shown a remarkable surge in incidence during the last 50 years. Melanoma has been projected to be continuously rising in the future. Therapy for advanced-type melanoma is still a challenge due to the low response rate and poor 10-year survival. Interestingly, several epidemiological and preclinical studies had reported that vitamin D deficiency was associated with disease progression in several cancer types. In vivo and in vitro studies revealed anti-proliferative, anti-angiogenic, apoptosis, and differentiation induction effects of calcitriol in various cancers. However, information on the effects of calcitriol (1,25(OH)2D3) on melanoma is still limited, and its mechanism remains unclear. MATERIAL AND METHODS In the present study, by utilizing B16-F10 cells, which is a melanoma cell line, we explored the anti-proliferative effect of calcitriol using cell viability assay, near-infrared imaging, expression of apoptosis-related genes using real-time polymerase chain reactions (PCR), and the expression of apoptosis proteins levels using western blot. In addition, we also assessed calcitriol uptake by B16-F10 cells using high-performance liquid chromatography (HPLC). RESULTS We found that calcitriol inhibits melanoma cell proliferation with an IC50 of 93.88 ppm (0.24 µM), as shown by cell viability assay. Additionally, we showed that B16-F10 cells are capable of calcitriol uptake, with a peak uptake time at 60 min after administration. Calcitriol was also able to induce apoptosis-related proteins such as caspase-3, caspase 8, and caspase-9. These effects of calcitriol reflect its potential utility as a potent adjuvant therapy for melanoma. CONCLUSIONS Calcitriol inhibits cell proliferation and induces apoptosis in B16-F10 cells.


Assuntos
Calcitriol , Melanoma Experimental , Animais , Apoptose , Calcitriol/farmacologia , Calcitriol/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo
7.
Front Pharmacol ; 13: 930515, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754488

RESUMO

Propolis is a resinous product collected by bees from plant exudates to protect and maintain hive homeostasis. Propolis has been used therapeutically for centuries as folk medicine. Modern research investigating the diversity of the chemical composition and plant sources, biological activity, extraction processes, analytical methods, and therapeutic properties in clinical settings have been carried out extensively since the 1980s. Due to its antimicrobial, anti-inflammatory, and immuno-modulator properties, propolis appears to be a suitable bioactive component to be incorporated into biomaterials. This review article attempts to analyze the potential application of propolis as a biomaterial component from the available experimental evidence. The efficacy and compabitility of propolis depend upon factors, such as types of extracts and types of biomaterials. Generally, propolis appears to be compatible with hydroxyapatite/calcium phosphate-based biomaterials. Propolis enhances the antimicrobial properties of the resulting composite materials while improving the physicochemical properties. Furthermore, propolis is also compatible with wound/skin dressing biomaterials. Propolis improves the wound healing properties of the biomaterials with no negative effects on the physicochemical properties of the composite biomaterials. However, the effect of propolis on the glass-based biomaterials cannot be generalized. Depending on the concentration, types of extract, and geographical sources of the propolis, the effect on the glass biomaterials can either be an improvement or detrimental in terms of mechanical properties such as compressive strength and shear bond strength. In conclusion, two of the more consistent impacts of propolis across these different types of biomaterials are the enhancement of the antimicrobial and the immune-modulator/anti-inflammatory properties resulting from the combination of propolis and the biomaterials.

8.
Integr Cancer Ther ; 21: 15347354221096868, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35593403

RESUMO

Propolis is a resinous beehive product that has a wide range of biological activities, namely antimicrobial, antioxidant, and anti-inflammatory properties. Propolis is collected by the bees from plant resin and exudates to protect hives and maintain hive homeostasis. The aim of the present systematic scoping review is to explore the potential and suitability of propolis as an adjunctive treatment in breast cancers, based on the latest available experimental evidence (2012-2021). After applying the exclusion criteria, a total of 83 research publications were identified and retrieved from Scopus, Web of Science, and Pubmed. Several relevant key themes identified from the included studies were cytotoxicity, synergistic/combination treatment, improvement in bioavailability, human clinical trials, and others. A majority of the studies identified were still in the in vitro and in vivo stages. Nonetheless, we managed to identify 4 human clinical trials that demonstrated the successful use of propolis in alleviating side effects of chemotherapy and radiotherapy while increasing the quality of life of breast cancer patients, with minimal adverse effects. In conclusion, propolis, as an adjunctive treatment, may have therapeutic benefits in alleviating symptoms related to breast cancers. However, further clinical trials, preferably with higher number of participants/subjects/patients, are urgently needed.


Assuntos
Anti-Infecciosos , Neoplasias da Mama , Própole , Anti-Infecciosos/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Própole/farmacologia , Própole/uso terapêutico , Qualidade de Vida
9.
Pak J Biol Sci ; 25(3): 226-233, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35234013

RESUMO

<b>Background and Objective:</b> Contusion in skeletal muscles were common in athletes.<sup> </sup>Contusions usually occur when the tissue is exposed to a rapid and strong compressive force, for example, a direct blow, which usually results in the formation of a hematoma within the muscle. Contusion injuries impair the physiological function of the muscle. Supplementation is needed to shorten the healing process. Alternative therapy is antioxidant supplementation. Therefore, we conducted a study on the administration of the antioxidant selenium in contusion rats. <b>Materials and Methods:</b> The subject of this study were male Wistar rats. Rats were divided into 3 groups, namely control group, contusion group and selenium group. Each group consisted of 5 rats. Selenium dose was 0.0513 mg kg<sup>1</sup> b.wt., dissolved into 2% PGA given once a day, for 3 consecutive days. After treatment periods, CK-MM level, IL-1ß and IL-6 level were examined. <b>Results:</b> Protein expression of IL-1ß and IL-6 were significantly lower in the selenium treatment group compared to the contusion group. These results were confirmed by improved step gait in the selenium group. But there was no significant decrease in serum CK-MM levels expression in the selenium treatment group when compared to the contusion group. <b>Conclusion:</b> Selenium supplementation improved gait function after contusion by suppressing IL-1ß and IL-6 expression. However, selenium administration did not alter CK-MM levels.


Assuntos
Contusões , Selênio , Animais , Contusões/tratamento farmacológico , Suplementos Nutricionais , Interleucina-6 , Masculino , Ratos , Ratos Wistar , Selênio/farmacologia
10.
Biomed Pharmacother ; 146: 112595, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35062065

RESUMO

Propolis is a resinous beehive product that is collected by the bees from plant resin and exudates, to protect and maintain hive homeostasis. Propolis has been used by humans therapeutically to treat many ailments including respiratory tract-related diseases and disorders. The aim of the present systematic scoping review is to evaluate the experimental evidence to support the use of propolis as a primary or an adjunctive therapy in respiratory tract-related diseases and disorders. After applying the exclusion criteria, 158 research publications were retrieved and identified from Scopus, Web of Science, Pubmed, and Google Scholar. The key themes of the included studies were pathogenic infection-related diseases and disorders, inflammation-related disorders, lung cancers, and adverse effects. Furthermore, the potential molecular and biochemical mechanisms of action of propolis in alleviating respiratory tract-related diseases and disorders are discussed. In conclusion, the therapeutic benefits of propolis have been demonstrated by various in vitro studies, in silico studies, animal models, and human clinical trials. Based on the weight and robustness of the available experimental and clinical evidence, propolis is effective, either as a primary or an adjunctive therapy, in treating respiratory tract-related diseases.


Assuntos
Anti-Infecciosos/farmacologia , Própole/farmacologia , Doenças Respiratórias/tratamento farmacológico , Animais , Anti-Infecciosos/administração & dosagem , Abelhas , Humanos , Própole/administração & dosagem
11.
Vet Med Sci ; 7(2): 512-520, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33389818

RESUMO

BACKGROUND: Browning of white adipose tissue (WAT) is a promising approach to obesity treatment. During browning, WAT transforms into beige adipose tissue through stimulation of the peroxisome proliferator activated receptor γ (PPARγ). Nutmeg, one of the Indonesian herbs, reportedly has dual roles as a PPARα/γ partial agonist. Even though nutmeg has been traditionally used in body weight reduction, there is limited information regarding the potential role of nutmeg in browning of WAT. OBJECTIVES: In this study, we explored the effect of nutmeg seed extract (NuSE) as a potential inductor of WAT browning. METHODS: Twelve male Wistar rats, 5-6 weeks old, were divided into control and nutmeg groups. The rats in nutmeg group were given NuSE for 12 weeks by oral gavage. After 12 weeks, the rat's inguinal WAT and brown adipose tissue (BAT) were collected, weighed and stored at - 80°C until use. RESULTS: We observed that even though NuSE did not reduce the final body weight, it significantly reduced body weight gain. NuSE also increased protein levels of peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α) and uncoupling protein 3 (UCP3) significantly and tended to increase UCP2 and UCP1 levels. Furthermore, NuSE induced macroscopic and microscopic morphological changes of inguinal WAT, marked by significantly increased adipocyte numbers and decreased adipocyte size. CONCLUSIONS: Even though NuSE did not increase UCP1 significantly, it potentially alters inguinal WAT characteristics and leads to browning through PGC-1α and UCP3 induction. However, UCP3's specific mechanism in WAT browning remains unclear. Our findings could contribute to obesity treatment in the future.


Assuntos
Tecido Adiposo Branco/metabolismo , Fármacos Antiobesidade/farmacologia , Myristica/química , Extratos Vegetais/farmacologia , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Fármacos Antiobesidade/química , Flores/química , Masculino , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Extratos Vegetais/química , Distribuição Aleatória , Ratos , Ratos Wistar , Proteína Desacopladora 1/metabolismo
12.
Biomed Pharmacother ; 134: 111125, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33341057

RESUMO

Selenium is a trace element that provides protection against cellular damage and death. Previous research using several types of cells identified anti-oxidant, anti-inflammatory, and anti-apoptotic effects for selenium. One of the diseases related to selenium is cardiovascular disease, as low selenium intake has been linked to cardiomyopathy. However, the mechanism of the cardioprotective effects of selenium is not thoroughly understood. Several studies supported the possible effects of selenium on heart cell survival. In this review, we analyzed recent research (2015-2020) on the roles and mechanism of action of selenium in cell survival and its cardioprotective effects. Furthermore, the prevention of apoptosis through both intrinsic and extrinsic pathways is discussed in this review. Signalling pathways that regulate cell survival such as the p-AMPK, poly (ADP-ribose) polymerase-1, nuclear factor-erythroid 2-related factor-2, AKT/PI3K, and STAT pathways are involved in the protective effects of selenium. In addition, signaling pathways that affect heart cell survival include the AKT and STAT pathways. It also affects autophagy through the PPAR-γ pathway. These findings should facilitate further research on the cardioprotective effects of selenium.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Doenças Cardiovasculares/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Selênio/uso terapêutico , Animais , Anti-Inflamatórios/efeitos adversos , Antioxidantes/efeitos adversos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Sobrevivência Celular/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Selênio/efeitos adversos , Transdução de Sinais
13.
J Trace Elem Med Biol ; 64: 126679, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33242796

RESUMO

BACKGROUND AND AIM: Selenium (Se) is an important element in the human body. Deficiency or excess of Se can cause harm to human health. A previous study showed an association of Se with cardiovascular and diabetes diseases. One of the food sources of Se is vegetables. In West Java, Indonesia, people consume fresh vegetables such as Garlic, Jengkol, and Petai. This research aims to study the correlation between the gastronomy culture of people in West Java, Se content in Garlic (Allium sativum), Jengkol (Archidendron pauciflorum) and Petai (Parkia speciosa) from several Regencys/cities in West Java, and the prevalence cardiovascular and diabetic diseases. METHOD: A cultural study was conducted based on a literature review. Cluster sampling was chosen for the sampling method. The prevalence of cardiovascular disease and diabetes in these regencies were obtained from the Ministry of Health of Indonesia. The measurement of Se content in a sample was conducted by the fluorometry method, based on the formation of the piazoselenol complex from the reaction between selenite ion and DAN (2,3-diaminonapthalene). RESULTS: People in West Java prefer to consume garlic, jengkol, and petai as a fresh vegetable as part of their culture. The highest content of Se in Allium sativum was found in Tasikmalaya City with a value of 69.20 ng/g. For Archidendron pauciflorum from Subang Regency values were 498 ng/g. Parkia speciosa found in the Bandung Barat Regency had a mean value 257.9 ng/g. There is a positive correlation between Se-concentration in Archidendron pauciflorum and the prevalence of diabetes while negative correlation with the prevalence of cardiovascular disease. In addition, no correlation was observed for Allium sativum and Parkia Specose might be due to a lower Se-concentration in these vegetables that in the Archidendron fauciflorum. CONCLUSION: Different areas have varying concentrations of Se in plants that grow in the region. The gastronomy culture and Se content may play a role to increase or decrease cardiovascular and diabetes prevalence in that area.


Assuntos
Doenças Cardiovasculares/epidemiologia , Diabetes Mellitus/epidemiologia , Selênio/análise , Fabaceae/química , Humanos , Indonésia
14.
Med Sci Monit Basic Res ; 26: e928648, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33361744

RESUMO

BACKGROUND Excessive reactive oxygen species (ROS) stimulate mitochondrial damage that causes degenerative diseases such as cardiovascular disease (CVD). ß-carotene (BC), a natural antioxidant able to counteract free radicals, acts as a cytoprotective agent. However, knowledge of the role of BC on cardiomyoblasts is limited. In this study, we explored its role on COX4, Tom20, Nfr1, Nrf2, Nf-kappaB, LC3, p62, caspase 3, and caspase 9 and its association with cardiomyoblast viability and survival. MATERIAL AND METHODS H9C2 cell lines were seeded, cultivated until 90% to 100% confluency, and treated with various doses of BC: 10 µM, 1 µM, 0.1 µM, and 0.01 µM. After 24 h, the cells were harvested, lyzed, and tested for specific related protein expressions from each dose. RESULTS Low-dose BC induced autophagy most effectively at 1 µM, 0.1 µM, and 0.01 µM, as indicated by a decrease of LC3II and p62 levels. We observed that Nf-kB protein levels were suppressed; Nrf2 was stimulated, but Nrf1 was not altered significantly. Further, low-dose BC might stimulate cell viability by reducing apoptotic signals of caspase 3 and 9. Notably, low-dose BC also showed potential to increase Tom20 protein levels. CONCLUSIONS Low-dose BC supplementation shows beneficial effects, especially at 0.01 µM, by reducing inflammation through the suppression of Nf-kappaB and increase of Nrf2 level. Autophagy as a cellular maintenance mechanism was also stimulated, and the amount of the mitochondria marker Tom20 increased. Taken together, results showed that specific low-dose BC is effective and might improve cell viability by stimulating autophagy, inhibiting proinflammatory factors, and suppressing apoptosis.


Assuntos
Autofagia , Caspases/metabolismo , Inflamação/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transdução de Sinais , beta Caroteno/farmacologia , Animais , Autofagia/efeitos dos fármacos , Biomarcadores/metabolismo , Linhagem Celular , Forma Celular/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Fator 1 Nuclear Respiratório/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos
15.
Artigo em Inglês | MEDLINE | ID: mdl-32565870

RESUMO

MATERIALS AND METHODS: Forty-eight male Wistar rats were divided into anti-inflammatory mechanism study (n = 18) and acute toxicity study (n = 30). The anti-inflammatory mechanism study employed six groups (n = 3), e.g., the normal control, negative control, positive control (quercetin 20 mg/kg BW), and three doses of BREE (250 mg/kg BW; 500 mg/kg BW; 1000 mg/kg BW). All groups (except the normal control) were inflammatory-induced i.p. using 0.1 mL of 1% of acetic acid. The expression of Akt and NF-kappaB p65 in the stomach and intestine of the rats was examined using Western blot analysis. The acute toxicity study (21 days) was conducted by following the Regulation of Indonesia National Agency of Drug and Food Control No. 7/2014 about In Vivo Nonclinical Toxicity Study using 5 doses of BREE (250 mg/kg BW; 500 mg/kg BW; 1000 mg/kg BW; 2000 mg/kg BW; 4000 mg/kg BW). RESULTS: BREE reduces the infiltration of inflammatory cells in both the stomach and the intestine of acetic acid-induced rats. BREE also alters the expression of Akt and NF-kappaB p65 in the rat's stomach and intestine (p=0.005). The acute toxicity study reveals no lethal effects and behavioral signs of toxicity at all tested doses, which indicates that the LD50 is greater than 4000 mg/kg BW. CONCLUSION: Taken together, BREE could inhibit the expression of Akt and NF-kappaB p65 in the stomach and intestine of acetic acid-induced Wistar rats. This plant could be further explored for its potential as plant-based antistomach ulceration.

16.
Pak J Biol Sci ; 23(3): 264-270, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31944087

RESUMO

BACKGROUND AND OBJECTIVE: Flavonols in plants are catalyzed by flavonol synthase (FLS) enzyme. FLS was reported expressed in flowers and fruits, i.e., Dianthus caryophyllus L. (Caryophyllaceae), Petunia hybrida Hort. (Solanaceae), Arabidopsis thaliana L. (Brassicaceae), Citrus unshiu Marc. (Rutaceae). However, none reported about FLS in medicinal plants, particularly those which possess anti-inflammatory activity. This study was aimed to extract and identify FLS in the rhizome of Boesenbergia rotunda (Zingiberaceae) and to determine quercetin in the ethanol extract of the rhizome. MATERIALS AND METHODS: The protein extraction of the rhizome was carried out by employing Laing and Christeller's (2004) and Wang's (2014) methods. The extracted-proteins were separated by using SDS-PAGE, followed by the measurement of FLS intensity by using Gel Analyzer. The FLS-1 of recombinant A. thaliana was employed as the standard. The determination of quercetin in the rhizome was carried out using LC-MS. RESULTS: The FLS occurred as a thick band at 38 kDa with intensity 116-158. The LC chromatogram of the extract indicated a small peak at 7.94 min similar to that of quercetin standard. The MS spectra at 7.94 min indicated that quercetin is present in the B. rotunda rhizome (m/z = 303.0549). The concentration of quercetin in the extract is 0.022% w/v. CONCLUSION: The FLS, an enzyme which plays an important role in producing quercetin, was detected in B. rotunda rhizome planted in Indonesia. As a consequence, quercetin in a small amount, was also quantified in the rhizome of this plant. This report will add a scientific insight of B. rotunda for biological sciences.


Assuntos
Flores/enzimologia , Frutas/enzimologia , Oxirredutases/química , Proteínas de Plantas/química , Quercetina/biossíntese , Zingiberaceae/enzimologia , Arabidopsis/enzimologia , Citrus/enzimologia , Dianthus/enzimologia , Etanol , Flavonóis/química , Indonésia , Petunia/enzimologia , Extratos Vegetais , Plantas Medicinais/enzimologia , Rizoma/enzimologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-30647761

RESUMO

The sarcopenic phenotype is characterized by a reduction of muscle mass, a shift in fiber-type distribution, and reduced satellite cell regeneration. Sarcopenia is still a major challenge to healthy aging. Traditional Indonesian societies in Sulawesi island have been using nutmeg for maintaining health condition during aging. Interestingly, nutmeg has been known to stimulate peroxisome proliferator activated receptors γ (PPARγ) which may contribute to myogenesis process in cardiac muscle. There is limited information about the role of nutmeg extract into physiological health benefit during aging especially myogenesis process in skeletal muscle. In the present study, we want to explore the potential effect of nutmeg in preserving skeletal muscle mass of aging rats. Aging rats, 80 weeks old, were divided into two groups (control and nutmeg). Nutmeg extract was administered for 12 weeks by gavaging. After treatment, rats were anaesthesized, then soleus and gastrocnemius muscles were collected, weighted, frozen using liquid nitrogen, and stored at -80°C until use. We observed phenomenon that nutmeg increased a little but significant food consumption on week 12, but significant decrease in body weight on weeks 10 and 12 unexpectedly increased significantly in soleus muscle weight (p<0.05). Nutmeg extract increased significantly gene expression of myogenic differentiation (MyoD), paired box 7 (Pax7), myogenin, myosin heavy chain I (MHC I), and insulin-like growth factor I (p<0.01) in soleus muscle. Furthermore, nutmeg increased serine/threonine kinase (AKT) protein levels and activation of mammalian target of rapamycin (mTOR), inhibited autophagy activity, and stimulated or at least preserved muscle mass during aging. Taken together, nutmeg extract may increase muscle mass or prevent decrease of muscle wasting in soleus muscle by partly stimulating myogenesis, regeneration process, and preserving muscle mass via IGF-AKT-mTOR pathway leading to inhibition of autophagy activity during aging. This finding may reveal the potential nutmeg benefits as alternative supplement for preserving skeletal muscle mass and preventing sarcopenia in elderly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA