Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Psychophysiol ; 164: 64-70, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33647382

RESUMO

Executive functions (EFs) play important roles in children's development, but their neural mechanisms are rarely investigated, especially for the different components of EFs in middle childhood. Therefore, this study aimed to explore the links between resting-state EEG in the frontal scalp region and EFs in children aged 7-9 years. Fifty-nine typically developing children from the second and third grades performed two core EF tasks, i.e., inhibition and working memory, and a high-level EF task, i.e., planning, followed by the recording of EEG signals during eyes-open and eyes-closed resting states. The results showed that distinct EEG activities in the frontal scalp region predicted different EF components. More specifically, after controlling for age and verbal ability, alpha to theta power ratio (ATR) and beta to theta power ratio (BTR) during the eyes-open resting state positively predicted inhibition, and beta to theta power ratio (BTR) during the eyes-open resting state positively predicted planning. However, we did not find any EEG features related to working memory. Our results contributed to the understanding of inter-individual differences in EFs and provided insights into the regulation of corresponding EEG activities through EEG neurofeedback for enhancing children's EFs.


Assuntos
Função Executiva , Neurorretroalimentação , Criança , Eletroencefalografia , Humanos , Inibição Psicológica , Memória de Curto Prazo
2.
J Cogn Neurosci ; 27(11): 2186-96, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26226073

RESUMO

Detecting a brief silent interval (i.e., a gap) is more difficult when listeners perceive two concurrent sounds rather than one in a sound containing a mistuned harmonic in otherwise in-tune harmonics. This impairment in gap detection may reflect the interaction of low-level encoding or the division of attention between two sound objects, both of which could interfere with signal detection. To distinguish between these two alternatives, we compared ERPs during active and passive listening with complex harmonic tones that could include a gap, a mistuned harmonic, both features, or neither. During active listening, participants indicated whether they heard a gap irrespective of mistuning. During passive listening, participants watched a subtitled muted movie of their choice while the same sounds were presented. Gap detection was impaired when the complex sounds included a mistuned harmonic that popped out as a separate object. The ERP analysis revealed an early gap-related activity that was little affected by mistuning during the active or passive listening condition. However, during active listening, there was a marked decrease in the late positive wave that was thought to index attention and response-related processes. These results suggest that the limitation in detecting the gap is related to attentional processing, possibly divided attention induced by the concurrent sound objects, rather than deficits in preattentional sensory encoding.


Assuntos
Atenção/fisiologia , Percepção Auditiva/fisiologia , Detecção de Sinal Psicológico/fisiologia , Som , Estimulação Acústica , Adulto , Análise de Variância , Mapeamento Encefálico , Eletroencefalografia , Potenciais Evocados/fisiologia , Feminino , Humanos , Masculino , Tempo de Reação/fisiologia , Adulto Jovem
3.
PLoS One ; 8(7): e68892, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935900

RESUMO

Much of what we know regarding the effect of stimulus repetition on neuroelectric adaptation comes from studies using artificially produced pure tones or harmonic complex sounds. Little is known about the neural processes associated with the representation of everyday sounds and how these may be affected by aging. In this study, we used real life, meaningful sounds presented at various azimuth positions and found that auditory evoked responses peaking at about 100 and 180 ms after sound onset decreased in amplitude with stimulus repetition. This neural adaptation was greater in young than in older adults and was more pronounced when the same sound was repeated at the same location. Moreover, the P2 waves showed differential patterns of domain-specific adaptation when location and identity was repeated among young adults. Background noise decreased ERP amplitudes and modulated the magnitude of repetition effects on both the N1 and P2 amplitude, and the effects were comparable in young and older adults. These findings reveal an age-related difference in the neural processes associated with adaptation to meaningful sounds, which may relate to older adults' difficulty in ignoring task-irrelevant stimuli.


Assuntos
Adaptação Fisiológica , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica , Adulto , Fatores Etários , Idoso , Atenção , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ruído , Tempo de Reação/fisiologia , Som
4.
Neuroimage ; 55(3): 1260-9, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21195187

RESUMO

Working memory for sound identity (What) and sound location (Where) has been associated with increased neural activity in ventral and dorsal brain regions, respectively. To further ascertain this domain specificity, we measured fMRI signals during an n-back (n=1, 2) working memory task for sound identity or location, where stimuli selected randomly from three semantic categories (human, animal, and music) were presented at three possible virtual locations. Accuracy and reaction times were comparable in both "What" and "Where" tasks, albeit worse for the 2-back than for the 1-back condition. The analysis of fMRI data revealed greater activity in ventral and dorsal brain regions during sound identity and sound location, respectively. More importantly, there was an interaction between task and working memory load in the inferior parietal lobule (IPL). Within the right IPL, there were two sub-regions modulated differentially by working memory load: an anterior ventromedial region modulated by location load and a posterior dorsolateral region modulated by category load. These specific changes in neural activity as a function of working memory load reveal domain-specificity within the parietal cortex.


Assuntos
Percepção Auditiva/fisiologia , Memória de Curto Prazo/fisiologia , Rede Nervosa/fisiologia , Localização de Som/fisiologia , Estimulação Acústica , Adolescente , Adulto , Animais , Vias Auditivas/fisiologia , Interpretação Estatística de Dados , Potenciais Evocados Auditivos/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Música , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA