Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glia ; 72(2): 433-451, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37870193

RESUMO

Mitochondria support the energetic demands of the cells. Autophagic turnover of mitochondria serves as a critical pathway for mitochondrial homeostasis. It is unclear how bioenergetics and autophagy are functionally connected. Here, we identify an endolysosomal membrane protein that facilitates autophagy to regulate ATP production in glia. We determined that Drosophila tweety (tty) is highly expressed in glia and localized to endolysosomes. Diminished fusion between autophagosomes and endolysosomes in tty-deficient glia was rescued by expressing the human Tweety Homolog 1 (TTYH1). Loss of tty in glia attenuated mitochondrial turnover, elevated mitochondrial oxidative stress, and impaired locomotor functions. The cellular and organismal defects were partially reversed by antioxidant treatment. We performed live-cell imaging of genetically encoded metabolite sensors to determine the impact of tty and autophagy deficiencies on glial bioenergetics. We found that tty-deficient glia exhibited reduced mitochondrial pyruvate consumption accompanied by a shift toward glycolysis for ATP production. Likewise, genetic inhibition of autophagy in glia resulted in a similar glycolytic shift in bioenergetics. Furthermore, the survival of mutant flies became more sensitive to starvation, underlining the significance of tty in the crosstalk between autophagy and bioenergetics. Together, our findings uncover the role for tty in mitochondrial homeostasis via facilitating autophagy, which determines bioenergetic balance in glia.


Assuntos
Autofagia , Proteínas de Drosophila , Drosophila , Metabolismo Energético , Proteínas de Membrana , Mitocôndrias , Animais , Humanos , Trifosfato de Adenosina/metabolismo , Autofagia/genética , Drosophila/genética , Drosophila/metabolismo , Metabolismo Energético/genética , Homeostase , Mitocôndrias/metabolismo , Neuroglia/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
2.
Nutrients ; 12(6)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526861

RESUMO

Lutein is one of the few xanthophyll carotenoids that is found in high concentration in the macula of human retina. As de novo synthesis of lutein within the human body is impossible, lutein can only be obtained from diet. It is a natural substance abundant in egg yolk and dark green leafy vegetables. Many basic and clinical studies have reported lutein's anti-oxidative and anti-inflammatory properties in the eye, suggesting its beneficial effects on protection and alleviation of ocular diseases such as age-related macular degeneration, diabetic retinopathy, retinopathy of prematurity, myopia, and cataract. Most importantly, lutein is categorized as Generally Regarded as Safe (GRAS), posing minimal side-effects upon long term consumption. In this review, we will discuss the chemical structure and properties of lutein as well as its application and safety as a nutritional supplement. Finally, the effects of lutein consumption on the aforementioned eye diseases will be reviewed.


Assuntos
Oftalmopatias/tratamento farmacológico , Luteína/administração & dosagem , Animais , Disponibilidade Biológica , Catarata , Retinopatia Diabética/tratamento farmacológico , Dieta , Suplementos Nutricionais/efeitos adversos , Humanos , Luteína/química , Luteína/farmacocinética , Macula Lutea/química , Degeneração Macular/tratamento farmacológico , Miopia/tratamento farmacológico , Plantas Comestíveis/química , Retinopatia da Prematuridade/tratamento farmacológico
3.
Neurochem Res ; 45(5): 1007-1019, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32088804

RESUMO

Photochemical and oxidative damages in retinal pigment epithelial (RPE) cells are key events in the pathogenesis of age-related macular degeneration. Polyunsaturated fatty acids (PUFA) and carotenoids are rich in retinal cells, and under oxidative stress leads to oxidation and release lipid mediators. We evaluated the impact of carotenoids (lutein, zeaxanthin) and docosahexaenoic acid (DHA) supplementation on RPE cells under oxidative stress. ARPE-19 cells were exposed to H2O2 after pre-treatment with lutein, zeaxanthin, DHA, lutein + zeaxanthin or lutein + zeaxanthin with DHA. The data showed H2O2 reduced cell viability and DHA content, while promoted catalase activity and certain oxidized PUFA products. Treatment with DHA enhanced omega-3 PUFA enzymatic oxidation namely, anti-inflammatory mediators such as hydroxy-DHA, resolvins and neuroprotection compared to control; the effects were not influenced by the carotenoids. Omega-6 PUFA oxidation, namely pro-inflammatory HETE (5-, 9-, 12 and 20-HETE), and isoprostanes (5- and 15-F2t-IsoP and 4-F3t-IsoP) were reduced by lutein + zeaxanthin while the addition of DHA did not further reduce these effects. We observed transcriptional regulation of 5-lipoxygenase by DHA and GPx1 and NEFEL2 by the carotenoids that potentially resulted in decreased HETEs and glutathione respectively. 4-HNE was not affected by the treatments but 4-HHE was reduced by lutein + zeaxanthin with and without DHA. To conclude, carotenoids and DHA appeared to regulate inflammatory lipid mediators while the carotenoids also showed benefits in reducing non-enzymatic oxidation of omega-6 PUFA.


Assuntos
Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Graxos Insaturados/antagonistas & inibidores , Peróxido de Hidrogênio/toxicidade , Luteína/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Zeaxantinas/administração & dosagem , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Ácidos Graxos Insaturados/metabolismo , Humanos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Epitélio Pigmentado da Retina/metabolismo
4.
Free Radic Biol Med ; 145: 349-356, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31605749

RESUMO

Appropriate diet is essential for the regulation of age-related macular degeneration (AMD). In particular the type of dietary polyunsaturated fatty acids (PUFA) and poor antioxidant status including carotenoid levels concomitantly contribute to AMD risk. Build-up of oxidative stress in AMD induces PUFA oxidation, and a mix of lipid oxidation products (LOPs) are generated. However, LOPs are not comprehensively evaluated in AMD. LOPs are considered biomarkers of oxidative stress but also contributes to inflammatory response. In this cross-sectional case-control study, plasma omega-6/omega-3 PUFA ratios and antioxidant status (glutathione, superoxide dismutase and catalase), and plasma and urinary LOPs (41 types) were determined to evaluate its odds-ratio in the risk of developing exudative AMD (n = 99) compared to age-gender-matched healthy controls (n = 198) in adults with Chinese diet. The odds ratio of developing exudative AMD increased with LOPs from omega-6 PUFA and decreased from those of omega-3 PUFA. These observations were associated with a high plasma omega-6/omega-3 PUFA ratio and low carotenoid levels. In short, poor PUFA and antioxidant status increased the production of omega-6 PUFA LOPs such as dihomo-isoprostane and dihomo-isofuran, and lowered omega-3 PUFA LOPs such as neuroprostanes due to the high omega-6/omega-3 PUFA ratios; they were also correlated to the risk of AMD development. These findings indicate the generation of specific LOPs is associated with the development of exudative AMD.


Assuntos
Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-6/administração & dosagem , Degeneração Macular/metabolismo , Estresse Oxidativo/efeitos dos fármacos , 3-Hidroxiacil-CoA Desidrogenases/genética , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Acetil-CoA C-Aciltransferase/genética , Acetil-CoA C-Aciltransferase/metabolismo , Idoso , Aldeídos/administração & dosagem , Antioxidantes/administração & dosagem , Biomarcadores/sangue , Isomerases de Ligação Dupla Carbono-Carbono/genética , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Carotenoides/metabolismo , Dieta/efeitos adversos , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Feminino , Humanos , Isoprostanos/administração & dosagem , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/genética , Degeneração Macular/etiologia , Degeneração Macular/genética , Degeneração Macular/patologia , Masculino , Pessoa de Meia-Idade , Neuroprostanos/administração & dosagem , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/genética , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Fatores de Risco
5.
Lipids ; 54(8): 453-464, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31257613

RESUMO

Dietary fatty acids are suggested to affect oxidative stress; however, results from interventions have been inconclusive. The aim was to examine if fatty fish, lean fish, and Camelina sativa oil (CSO) affect the urinary prostanoid levels in subjects with impaired glucose metabolism. Altogether 79 participants aged 43-72 years completed a randomized controlled study lasting 12 weeks. There were four parallel groups, fatty fish, lean fish (four fish meals/week in both), CSO providing 10 g/day alpha-linolenic acid (ALA), and control diet with limited fish and ALA containing oil consumption. Urinary prostanoids (prostaglandin F2α , 5-F2t -isoprostanes and 15-F2t -isoprostane metabolites, isofuran, 8-F3t -isoprostanes, and 4-(RS)-4-F4t -neuroprostane) of 72 participants (age: mean (±SD) 58.9 ± 6.5 years; body mass index: 29.3 ± 2.5 kg/m2 ) collected over 12-h were measured using liquid chromatography tandem-mass spectrometry. Plasma phospholipid fatty acids were determined using gas chromatography. Our study showed that the proportion of ALA in plasma phospholipids increased in the CSO group (overall difference among the groups p-value <0.001). In the fatty fish group, proportions of eicosapentaenoic and docosahexaenoic acids increased (overall p-value <0.001 for both). Prostaglandin F2α was higher in the CSO group than in the control group (p < 0.05), however, there were no other significant changes in urinary excretion of other prostanoids among the study groups. At baseline, arachidonic acid in plasma phospholipids was positively (r = 0.247, p < 0.05) and ALA negatively (r = -0.326, p < 0.05) associated with urinary total isoprostanes. In conclusion, CSO, fatty fish, and lean fish consumption do not cause major changes in oxidative stress markers in subjects with impaired glucose tolerance.


Assuntos
Camellia/química , Ácidos Graxos Ômega-3/química , Peixes , Glucose/metabolismo , Óleos de Plantas/farmacologia , Prostaglandinas/metabolismo , Prostaglandinas/urina , Adulto , Idoso , Animais , Ácidos Graxos Ômega-3/farmacologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacos , Óleos de Plantas/química
6.
Free Radic Res ; 51(3): 269-280, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28301979

RESUMO

Short-term exposure to ultraviolet A (UVA) radiation can directly injure our skin through inflammatory response and indirectly through oxidative stress, triggering polyunsaturated fatty acid (PUFA) peroxidation in skin cell membrane and formation of DNA adduct, 8-hydroxy-2'-deoxyguanosine (8-OHdG). It is known that UVA exposure leads to photoaging, immunosuppression and skin cancer. However, the changes in PUFA and its oxidized metabolites, and cell cycle after short UVA exposure, are debatable. In this study, human keratinocytes (HaCaT) were exposed to low dose (5 J/cm2) and high dose (20 J/cm2) of UVA and assessed immediately, 8 h, 12 h, and 24 h post-treatment. Both doses showed a transient suppression in S-phase after 8 h of UVA exposure, and G2/M phase arrest after 12-h UVA exposure in the cell cycle but subsequently returned to normal cycle. Also, no observable DNA damage took place, where 8-OHdG levels were below par after 24-h UVA exposure. A dose of 20 J/cm2 UVA stimulated significant amount of arachidonic acid, n-3 docosapentaenoic acid, and docosahexaenoic acid (DHA) but lowered adrenic acid and eicospentaenoic acid after 24-h exposure. Among the 43 oxidized PUFA products determined, enzyme-dependent oxidized PUFAs, namely, 14-hydroxy-DHA (HDoHE) level reduced, and 8- and 13-HDoHE levels elevated significantly in a linear trend with post-treatment time. Out of the nonenzymatic oxidized PUFAs, a significant linear trend with post-treatment time was shown on the reduction of 5-F2t-Isoprostane (IsoP), 15-F2t-IsoP, Isofurans, 5-F3t-IsoP, Neurofurans, and 20-HDoHE. Our observations indicate oxidative stress through short UVA exposure on human keratinocytes did not have detrimental consequences.


Assuntos
Antioxidantes/efeitos da radiação , Ácidos Graxos Insaturados/efeitos da radiação , Queratinócitos/efeitos da radiação , Pele/efeitos da radiação , Antioxidantes/metabolismo , Ácido Araquidônico/metabolismo , Linhagem Celular , Dano ao DNA/efeitos da radiação , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Humanos , Queratinócitos/metabolismo , Peroxidação de Lipídeos/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Pele/metabolismo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA