Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Eye Res ; 71(4): 371-83, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10995558

RESUMO

Oxidative effects on lens proteins have been linked with the formation of human age-related cataract, particularly nuclear cataract. This study investigated the effects of hyperbaric oxygen (HBO)-induced oxidative stress on nuclear and cortical alpha-, beta- and gamma-crystallins of cultured rabbit lenses, using high performance liquid chromatography (HPLC). The lenses were treated with 50 atm of either 100% N(2)(control) or 100% O(2)(experimental) for 3, 6, 16 and 48 hr. The levels of reduced glutathione (GSH) and water-soluble (WS) protein decreased more rapidly in the nucleus of the O(2)-treated lens than in the cortex. The first significant loss of WS protein in each of the two regions occurred when levels of GSH had decreased by at least 90% in either the nucleus (at 6 hr) or the cortex (at 16 hr). HPLC analysis of the nuclear WS proteins indicated that beta-crystallins were the first proteins affected by the oxidative stress. Soon after HBO-treatment was initiated (at 6 hr) and prior to insolubilization of protein, nuclear beta- and gamma-crystallins moved to the higher molecular weight alpha-crystallin fraction; 2-D gel electrophoresis and Western blotting indicated the presence of disulfide-crosslinked and non-crosslinked beta- and gamma-crystallins in this fraction. Significantly different HBO-induced effects were observed on lens cortical crystallins compared to those for the nucleus. For example, gamma-crystallins in the cortex shifted very soon after HBO-treatment (at 3 hr) to slightly higher molecular weights, possibly the result of protein/glutathione mixed disulfide formation; however, this phenomenon was not observed in the nucleus. Cortical beta- and gamma-crystallins remained in solution longer than nuclear proteins following HBO-treatment of the lenses, presumably the result of protection from the four-fold higher level of GSH (22 vs 6 m M) present in the lens periphery. Surprisingly, there was no movement of beta- and gamma-crystallins to alpha(H)- and alpha-crystallin fractions in the cortex of the O(2)-treated lens, in contrast to that observed for the nucleus. Cortical crystallins appeared to go directly from being soluble to being insoluble with no high molecular weight intermediate stage. The data suggested a possible chaperone-like function for alpha-crystallin in the nucleus of the stressed lenses, but not in the cortex. HBO-induced effects on lens nuclear supernatants, which mimicked those observed for intact lenses, could be nearly completely prevented by the copper-chelator bathocuproine, but not by the iron-chelator deferoxamine. Overall, the results provide additional evidence demonstrating an increased susceptibility of the lens nucleus to oxidative stress; the greater protective ability of the cortex may be linked to a higher capacity for beta- and gamma-crystallin/glutathione mixed disulfide formation, inhibiting disulfide-crosslinked insolubilization. The data also implicate copper as a catalyst for the autoxidation of -SH groups in the lens, and suggest that alpha-crystallin chaperone-like activity may play a greater role in the lens nucleus than in the cortex in preventing oxidative insolubilization of crystallins.


Assuntos
Cobre/farmacologia , Cristalinas/química , Oxigenoterapia Hiperbárica/efeitos adversos , Animais , Western Blotting , Catálise , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Cristalinas/efeitos dos fármacos , Eletroforese em Gel Bidimensional , Glutationa/análise , Cristalino/química , Cristalino/citologia , Cristalino/efeitos dos fármacos , Estresse Oxidativo , Coelhos
2.
Invest Ophthalmol Vis Sci ; 41(10): 3061-73, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10967065

RESUMO

PURPOSE: To measure lipid compositional and structural changes in lenses as a result of hyperbaric oxygen (HBO) treatment in vivo. HBO treatment in vivo has been shown to produce increased lens nuclear light scattering. METHODS: Guinea pigs, approximately 650 days old at death, were given 30 and 50 HBO treatments over 10- and 17-week periods, respectively, and the lenses were sectioned into equatorial, cortical, and nuclear regions. Lipid oxidation, composition, and structure were measured using infrared spectroscopy. Phospholipid composition was measured using (31)P-NMR spectroscopy. Data were compared with those obtained from lenses of 29- and 644-day-old untreated guinea pigs. RESULTS: The percentage of sphingolipid approximately doubled with increasing age (29-544 days old). Concomitant with an increase in sphingolipid was an increase in hydrocarbon chain saturation. The extent of normal lens lipid hydrocarbon chain order increased with age from the equatorial and cortical regions to the nucleus. These order data support the hypothesis that the degree of lipid hydrocarbon order is determined by the amount of lipid saturation, as regulated by the content of saturated sphingolipid. Products of lipid oxidation (including lipid hydroxyl, hydroperoxyl, and aldehydes) and lipid disorder increased only in the nuclear region of lenses after 30 HBO treatments, compared with control lenses. Enhanced oxidation correlated with the observed loss of transparency in the central region. HBO treatment in vivo appeared to accelerate age-related changes in lens lipid oxidation, particularly in the nucleus, which possesses less antioxidant capability. CONCLUSIONS: Oxidation could account for the lipid compositional changes that are observed to occur in the lens with age and cataract. Increased lipid oxidation and hydrocarbon chain disorder correlate with increased lens nuclear opacity in the in vivo HBO model.


Assuntos
Envelhecimento/fisiologia , Oxigenoterapia Hiperbárica , Núcleo do Cristalino/metabolismo , Peroxidação de Lipídeos , Lipídeos de Membrana/metabolismo , Espalhamento de Radiação , Animais , Cobaias , Núcleo do Cristalino/efeitos da radiação , Luz , Peróxidos Lipídicos/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Fosfolipídeos/metabolismo , Espectrofotometria Infravermelho
3.
Exp Eye Res ; 68(4): 493-504, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10192807

RESUMO

Previous studies have shown that treatment of guinea pigs with hyperbaric oxygen (HBO) produces certain changes in the lens nuclei of the animals which are typical of those occurring during aging. These include an increase in nuclear light scattering (NLS), elevation in levels of oxidized thiols, loss of water-soluble protein and damage to nuclear membranes. The present study investigated the effect of HBO-treatment in vivo on lens cytoskeletal proteins and MIP26 which are also known to undergo alteration with age. Young (2-month-old) and old (18-month-old) guinea pigs were treated 15 and 30 times with HBO (3 times per week with 2.5 atmospheres of 100% oxygen for 2.5 hr periods). SDS-PAGE and Western blotting showed that HBO-treatment of the older animals accelerated the age-related loss of five nuclear cytoskeletal proteins including actin, vimentin, ankyrin, alpha-actinin and tubulin, compared to levels present in age-matched controls (effects on spectrin and the beaded filaments were not investigated in this study). Treatment of the young animals with HBO produced losses which were primarily associated with concentrations of the nuclear alpha- and beta-tubulins; these cytoskeletal proteins were observed to be most sensitive to the induced oxidative stress, and were affected earliest in the study. Disulfide-crosslinking, rather than proteolysis, appeared to be the main cause of the HBO-induced cytoskeletal protein loss (elevated levels of calcium, which might have induced proteolysis, were not found in the experimental nuclei). Loss of MIP26 was observed only in the older guinea pigs treated 30 times with HBO; both disulfide-crosslinking and degradation to MIP22 were associated with the disappearance. Thus, nuclear MIP26 was susceptible to oxidative stress, but less so than the cytoskeletal proteins, particularly the tubulins. No cortical effects on either MIP26 or the cytoskeletal proteins were observed under any of the treatment protocols. No direct link was observed between an HBO-induced increase in NLS (observed in both the young and old animals using slit-lamp biomicroscopy) and losses of either MIP26 or the cytoskeletal proteins. The appearance of HBO-induced nuclear opacity without any change in the levels of nuclear sodium, potassium or calcium is similar to that observed previously for human senile pure nuclear cataracts. The results provide additional evidence that molecular oxygen can enter the nucleus of the lens and promote age-related events. The observed effects on MIP26 and the cytoskeletal proteins are indicative of an increased level of lens nuclear oxidative stress in the HBO model, possibly a precursor to nuclear cataract.


Assuntos
Envelhecimento/metabolismo , Catarata/etiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas do Olho/metabolismo , Oxigenoterapia Hiperbárica/efeitos adversos , Núcleo do Cristalino/metabolismo , Glicoproteínas de Membrana , Animais , Aquaporinas , Cálcio/metabolismo , Cristalinas/metabolismo , Eletroforese em Gel de Poliacrilamida , Cobaias , Modelos Biológicos , Potássio/metabolismo , Sódio/metabolismo , Tubulina (Proteína)/metabolismo , Vimentina/metabolismo
4.
Exp Eye Res ; 65(3): 435-43, 1997 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9299180

RESUMO

We showed previously that treatment of cultured rabbit lens epithelial cells (LECs) with hyperbaric oxygen (HBO) produced DNA strand-breaks, caused reversible inhibition of protein synthesis and induced the synthesis of a 32 kD protein. In the present work, we employed immunostaining procedures to identify the 32 kD protein as heme oxygenase-1 (HO-1). Increased synthesis of the enzyme was observed as early as 12 hr after HBO-treatment, reached a maximum at 18 hr and was not detectable at 36 hr. Exposure of the cells to hemin also increased the synthesis of HO-1. An HBO-induced inhibition of protein synthesis and the subsequent induction of HO-1 was also observed in the capsule-epithelium of cultured rabbit lenses. For both LECs and the cultured lens, only HO-1 and not heme oxygenase-2 was HBO-inducible. Use of the antioxidant dimethylthiourea with HBO-treated lenses or LECs did not alter the observed effects on protein synthesis or the induction of HO-1. In contrast to results obtained with 50 atm O2, a pressure of 25 atm O2 inhibited protein synthesis only slightly and failed to induce synthesis of the 32 kD protein (although, as shown previously, identical exposure of LECs to 25 atm O2 significantly damaged DNA). Inhibition of protein synthesis in LECs and cultured lenses with the use of puromycin also induced synthesis of HO-1. Both hemin (10 micron), a source of iron, and 50 atm O2 produced a three-fold increase in the concentration of ferritin, a natural iron chelator, in LECs two days after exposure; no effects on ferritin levels were observed after 1 or 3 days. The finding that the increase in ferritin concentration occurred in the cells significantly after hemin- or HBO-induced synthesis of heme oxygenase indicates that chelatable iron rather than the heme molecule itself may have been the primary agent responsible for inducing ferritin synthesis. The data suggest that HBO-induced synthesis of HO-1 in the lens epithelium may be the result of an inhibition of protein synthesis, possibly leading to an accumulation of heme, rather than a direct protective response against oxidative stress.


Assuntos
Heme Oxigenase (Desciclizante)/metabolismo , Oxigenoterapia Hiperbárica , Cápsula do Cristalino/metabolismo , Cristalino/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Puromicina/farmacologia , Animais , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Ferritinas/metabolismo , Heme Oxigenase (Desciclizante)/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/isolamento & purificação , Hemina/farmacologia , Immunoblotting , Técnicas In Vitro , Cristalino/efeitos dos fármacos , Estresse Oxidativo , Coelhos , Tioureia/análogos & derivados , Tioureia/farmacologia
5.
Exp Eye Res ; 60(3): 219-35, 1995 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-7789403

RESUMO

Nuclear cataract, a major cause of loss of lens transparency in the aging human, has long been thought to be associated with oxidative damage, particularly at the site of the nuclear plasma membrane. However, few animal models have been available to study the mechanism of the opacity. Hyperbaric oxygen (HBO) has been shown to produce increased nuclear light scattering (NLS) and nuclear cataract in lenses of mice and human patients. In the present study, older guinea pigs (Initially 17-18 months of age) were treated with 2.5 atmospheres of 100% O2 for 2-2.5-hr periods, three times per week, for up to 100 times. Examination by slit-lamp biomicroscopy showed that exposure to HBO led to increased NLS in the lenses of the animals after as few as 19 treatments, compared to lenses of age-matched untreated and hyperbaric air-treated controls. The degree of NLS and enlargement of the lens nucleus continued to increase until 65 O2-treatments, and then remained constant until the end of the study. Exposure to O2 for 2.5 instead of 2 hr accelerated the increase in NLS; however, distinct nuclear cataract was not observed in the animals during the period of investigation. A number of morphological changes in the experimental lens nuclei, as analysed by transmission electron microscopy, were similar to those recently reported for human immature nuclear cataracts (Costello, Oliver and Cobo, 1992). O2-induced damage to membranes probably acted as scattering centers and caused the observed increased NLS. A general state of oxidative stress existed in the lens nucleus of the O2-treated animals, prior to the first appearance of increased NLS, as evidenced by increased levels of protein-thiol mixed disulfides and protein disulfide. The levels of mixed disulfides in the experimental nucleus were remarkably high, nearly equal to the normal level of nuclear GSH. The level of GSH in the normal guinea pig lens decreased with age in the nucleus but not in the cortex; at 30 months of age the nuclear level of GSH was only 4% of the cortical value. HBO-induced changes in the lens nucleus included loss of soluble protein, increase in urea-insoluble protein and slight decreases in levels of GSH and ascorbate; however, there was no accumulation of oxidized glutathione. Intermolecular protein disulfide in the experimental nucleus consisted mainly of gamma-crystallin, but crosslinked alpha-, beta- and zeta-crystallins were also present.(ABSTRACT TRUNCATED AT 400 WORDS)


Assuntos
Catarata/etiologia , Dissulfetos/metabolismo , Oxigenoterapia Hiperbárica , Núcleo do Cristalino/metabolismo , Espalhamento de Radiação , Animais , Cristalinas/metabolismo , Modelos Animais de Doenças , Eletroforese em Gel de Poliacrilamida , Cobaias , Núcleo do Cristalino/efeitos dos fármacos , Núcleo do Cristalino/ultraestrutura , Luz , Masculino , Microscopia Eletrônica , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA