Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Commun Biol ; 4(1): 169, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547403

RESUMO

A comprehensive view of our evolutionary history cannot ignore the ancestral features of our gut microbiota. To provide some glimpse into the past, we searched for human gut microbiome components in ancient DNA from 14 archeological sediments spanning four stratigraphic units of El Salt Middle Paleolithic site (Spain), including layers of unit X, which has yielded well-preserved Neanderthal occupation deposits dating around 50 kya. According to our findings, bacterial genera belonging to families known to be part of the modern human gut microbiome are abundantly represented only across unit X samples, showing that well-known beneficial gut commensals, such as Blautia, Dorea, Roseburia, Ruminococcus, Faecalibacterium and Bifidobacterium already populated the intestinal microbiome of Homo since as far back as the last common ancestor between humans and Neanderthals.


Assuntos
Fezes/microbiologia , Microbioma Gastrointestinal , Homem de Neandertal/microbiologia , Animais , Arqueologia , DNA Antigo/isolamento & purificação , Ecossistema , Fósseis/microbiologia , Sedimentos Geológicos/análise , Sedimentos Geológicos/microbiologia , História Antiga , Humanos , Metagenômica , Análise de Sequência de DNA , Espanha
2.
Philos Trans R Soc Lond B Biol Sci ; 375(1812): 20190586, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33012230

RESUMO

Human microbiome studies are increasingly incorporating macroecological approaches, such as community assembly, network analysis and functional redundancy to more fully characterize the microbiome. Such analyses have not been applied to ancient human microbiomes, preventing insights into human microbiome evolution. We address this issue by analysing published ancient microbiome datasets: coprolites from Rio Zape (n = 7; 700 CE Mexico) and historic dental calculus (n = 44; 1770-1855 CE, UK), as well as two novel dental calculus datasets: Maya (n = 7; 170 BCE-885 CE, Belize) and Nuragic Sardinians (n = 11; 1400-850 BCE, Italy). Periodontitis-associated bacteria (Treponema denticola, Fusobacterium nucleatum and Eubacterium saphenum) were identified as keystone taxa in the dental calculus datasets. Coprolite keystone taxa included known short-chain fatty acid producers (Eubacterium biforme, Phascolarctobacterium succinatutens) and potentially disease-associated bacteria (Escherichia, Brachyspira). Overlap in ecological profiles between ancient and modern microbiomes was indicated by similarity in functional response diversity profiles between contemporary hunter-gatherers and ancient coprolites, as well as parallels between ancient Maya, historic UK, and modern Spanish dental calculus; however, the ancient Nuragic dental calculus shows a distinct ecological structure. We detected key ecological signatures from ancient microbiome data, paving the way to expand understanding of human microbiome evolution. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.


Assuntos
Bactérias/isolamento & purificação , DNA Antigo/análise , Cálculos Dentários/história , Fezes/microbiologia , Microbiota , Arqueologia , Belize , DNA Bacteriano/análise , Cálculos Dentários/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , História Antiga , História Medieval , Humanos , Itália , México
3.
Am J Phys Anthropol ; 141(2): 281-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19672848

RESUMO

This study examines a genome-wide dataset of 678 Short Tandem Repeat loci characterized in 444 individuals representing 29 Native American populations as well as the Tundra Netsi and Yakut populations from Siberia. Using these data, the study tests four current hypotheses regarding the hierarchical distribution of neutral genetic variation in native South American populations: (1) the western region of South America harbors more variation than the eastern region of South America, (2) Central American and western South American populations cluster exclusively, (3) populations speaking the Chibchan-Paezan and Equatorial-Tucanoan language stock emerge as a group within an otherwise South American clade, (4) Chibchan-Paezan populations in Central America emerge together at the tips of the Chibchan-Paezan cluster. This study finds that hierarchical models with the best fit place Central American populations, and populations speaking the Chibchan-Paezan language stock, at a basal position or separated from the South American group, which is more consistent with a serial founder effect into South America than that previously described. Western (Andean) South America is found to harbor similar levels of variation as eastern (Equatorial-Tucanoan and Ge-Pano-Carib) South America, which is inconsistent with an initial west coast migration into South America. Moreover, in all relevant models, the estimates of genetic diversity within geographic regions suggest a major bottleneck or founder effect occurring within the North American subcontinent, before the peopling of Central and South America.


Assuntos
Evolução Molecular , Variação Genética , Indígenas Norte-Americanos/genética , Repetições de Microssatélites/genética , Modelos Genéticos , Análise por Conglomerados , Demografia , História Antiga , Humanos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA