Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Cancer Res ; 14(3): 1338-1352, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590417

RESUMO

Cistanche deserticola, known for its extensive history in Traditional Chinese Medicine (TCM), is valued for its therapeutic properties. Recent studies have identified its anticancer capabilities, yet the mechanisms underlying these properties remain to be fully elucidated. In this study, we determined that a mixture of four cistanche-derived phenylethanoid glycosides (CPhGs), echinacoside, acteoside, 2-acetylacteoside, and cistanoside A, which are among the main bioactive compounds in C. deserticola, eliminated T-cell lymphoma (TCL) cells by inducing apoptosis and pyroptosis in vitro and attenuated tumor growth in vivo in a xenograft mouse model. At the molecular level, these CPhGs elevated P53 by inhibiting the SIRT2-MDM2/P300 and PI3K/AKT carcinogenic axes and activating PTEN-Bax tumor-suppressing signaling. Moreover, CPhGs activated noncanonical and alternative pathways to trigger pyroptosis. Interestingly, CPhGs did not activate canonical NLRP3-caspase-1 pyroptotic signaling pathway; instead, CPhGs suppressed the inflammasome factor NLRP3 and the maturation of IL-1ß. Treatment with a caspase-1/4 inhibitor and silencing of Gasdermin D (GSDMD) or Gasdermin E (GSDME) partially rescued CPhG-induced cell death. Conversely, forced expression of NLRP3 restored cell proliferation. In summary, our results indicate that CPhGs modulate multiple signaling pathways to achieve their anticancer properties and perform dual roles in pyroptosis and NLRP3-driven proliferation. This study offers experimental support for the potential application of CPhGs in the treatment of TCL.

2.
Nano Lett ; 24(17): 5154-5164, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602357

RESUMO

Developing novel strategies for defeating osteoporosis has become a world-wide challenge with the aging of the population. In this work, novel supramolecular nanoagonists (NAs), constructed from alkaloids and phenolic acids, emerge as a carrier-free nanotherapy for efficacious osteoporosis treatment. These precision nanoagonists are formed through the self-assembly of berberine (BER) and chlorogenic acid (CGA), utilizing noncovalent electrostatic, π-π, and hydrophobic interactions. This assembly results in a 100% drug loading capacity and stable nanostructure. Furthermore, the resulting weights and proportions of CGA and BER within the NAs are meticulously controlled with strong consistency when the CGA/BER assembly feed ratio is altered from 1:1 to 1:4. As anticipated, our NAs themselves could passively target osteoporotic bone tissues following prolonged blood circulation, modulate Wnt signaling, regulate osteogenic differentiation, and ameliorate bone loss in ovariectomy-induced osteoporotic mice. We hope this work will open a new strategy to design efficient herbal-derived Wnt NAs for dealing with intractable osteoporosis.


Assuntos
Berberina , Ácido Clorogênico , Osteoporose , Osteoporose/tratamento farmacológico , Animais , Camundongos , Berberina/farmacologia , Berberina/uso terapêutico , Berberina/química , Berberina/administração & dosagem , Berberina/farmacocinética , Ácido Clorogênico/química , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Ácido Clorogênico/administração & dosagem , Feminino , Humanos , Osteogênese/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Nanoestruturas/química , Nanoestruturas/uso terapêutico
3.
Animals (Basel) ; 13(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36899700

RESUMO

The aim of this study was to investigate the effect of low-protein diets supplemented with rumen-protected lysine (RPLys) and methionine (RPMet) on growth performance, rumen fermentation, blood biochemical parameters, nitrogen metabolism, and gene expression related to N metabolism in the liver of Holstein bulls. Thirty-six healthy and disease-free Holstein bulls with a similar body weight (BW) (424 ± 15 kg, 13 months old) were selected. According to their BW, they were randomly divided into three groups with 12 bulls in each group in a completely randomized design. The control group (D1) was fed with a high-protein basal diet (CP13%), while bulls in two low-protein groups were supplied a diet with 11% crude protein and RPLys 34 g/d·head + RPMet 2 g/d·head (low protein with low RPAA, T2) or RPLys 55 g/d·head + RPMet 9 g/d·head (low protein with high RPAA, T3). At the end of the experiment, the feces and urine of dairy bulls were collected for three consecutive days. Blood and rumen fluid were collected before morning feeding, and liver samples were collected after slaughtering. The results showed that the average daily gain (ADG) of bulls in the T3 group was higher than those in D1 (p < 0.05). Compared with D1, a significantly higher nitrogen utilization rate (p < 0.05) and serum IGF-1 content (p < 0.05) were observed in both T2 and T3 groups; however, blood urea nitrogen (BUN) content was significantly lower in the T2 and T3 groups (p < 0.05). The content of acetic acid in the rumen of the T3 group was significantly higher than that of the D1 group. No significant differences were observed among the different groups (p > 0.05) in relation to the alpha diversity. Compared with D1, the relative abundance of Christensenellaceae_R-7_group in T3 was higher (p < 0.05), while that of Prevotellaceae _YAB2003_group and Succinivibrio were lower (p < 0.05). Compared with D1 and T2 group, the T3 group showed an expression of messenger ribonucleic acid (mRNA) that is associated with (CPS-1, ASS1, OTC, ARG) and (N-AGS, S6K1, eIF4B, mTORC1) in liver; moreover, the T3 group was significantly enhanced (p < 0.05). Overall, our results indicated that low dietary protein (11%) levels added with RPAA (RPLys 55 g/d +RPMet 9 g/d) can benefit the growth performance of Holstein bulls by reducing nitrogen excretion and enhancing nitrogen efficiency in the liver.

4.
Sci Total Environ ; 869: 161622, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36649772

RESUMO

Coupling phosphate-solubilizing microorganisms (PSM) can improve the availability of phosphorous (P) in biochar-based slow-release P fertilizers (BPF). However, the mechanism in release and transformation of P in BPF regulated by PSM is still unclear. Herein, the biocompatibility and the adhesion behaviors of BPF and PSM (Enterobacter hormaechei Rs-198) in soil were firstly studied, and a 90 days' laboratory-scale soil incubation experiment of BPF and Rs-198 was performed to study the transformation of P of BPF. The results show that BPF has a good biocompatibility for Rs-198 due to its low aromaticity, graphitization and free radicals' content (0.084 mg/g). Rs-198 are adhered to the surface of BPF in soil due to the high negative secondary energy minimum and low total interaction energy between Rs-198 and BPF. Available P in the incubation of BPF and Rs-198 (BR treatment) is significantly higher than that of the incubation of BPF (BF treatment) at initial 60 days. However, the content of available P in BR treatment is much lower compared with that in BF treatment on day 90, which is attributed to the entrapment of released P from BPF by Rs-198 and the formation of polyphosphate (polyP) rather than bound with soil mineral. Overall, this study presents new insights into the transformation of P in BPF regulated by PSM.


Assuntos
Fertilizantes , Fósforo , Fósforo/metabolismo , Fertilizantes/análise , Carvão Vegetal , Solo , Polifosfatos
5.
Molecules ; 24(10)2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091760

RESUMO

As a hyperproliferative disorder, cancer has continued to be a major public health challenge. In the present study, a polysaccharide JC-PS1 was isolated and purified from Juniperus convallium. JC-PS1 is a heteropolysaccharide composed of Ara, Gal, GalA and Rha with the average molecular weight of 280 kDa. Based on the methylation and 2D NMR analysis, JC-PS1 was elucidated as a backbone of →5)-α-Araf-(1→ and →3,5)-α-Araf-(1→, and three kinds of branches attached to the O-3 position of →3,5)-α-Araf-(1→, including ß-GalpA-(1→3)-ß-Galp-(1→, α-Araf-(1→3)-α-Rhap-(1→ and α-Araf-(1→3)-ß-Galp-(1→. Accordingly, the atomic force microscopy of JC-PS1 showed a linear filamentous structure with small proportion of branches. Furthermore, JC-PS1 exhibited significant anti-proliferation activities against PANC-1, A431, MDA-MB-231, U118MG and H1975 cells with the IC50 values of 296.8, 477.9, 657.4, 686.7 and 862.1 µg/mL, respectively. This indicated that JC-PS1 could be a potential therapeutic agent for the treatment of cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Galactanos/química , Galactanos/farmacologia , Juniperus/química , Antineoplásicos Fitogênicos/química , Configuração de Carboidratos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Microscopia de Força Atômica , Modelos Moleculares , Peso Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia
6.
Virol J ; 11: 10, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24456815

RESUMO

BACKGROUND: Japanese encephalitis virus (JEV) has a significant impact on public health. An estimated three billion people in 'at-risk' regions remain unvaccinated and the number of unvaccinated individuals in certain Asian countries is increasing. Consequently, there is an urgent need for the development of novel therapeutic agents against Japanese encephalitis. Nitazoxanide (NTZ) is a thiazolide anti-infective licensed for the treatment of parasitic gastroenteritis. Recently, NTZ has been demonstrated to have antiviral properties. In this study, the anti-JEV activity of NTZ was evaluated in cultured cells and in a mouse model. METHODS: JEV-infected cells were treated with NTZ at different concentrations. The replication of JEV in the mock- and NTZ-treated cells was examined by virus titration. NTZ was administered at different time points of JEV infection to determine the stage at which NTZ affected JEV replication. Mice were infected with a lethal dose of JEV and intragastrically administered with NTZ from 1 day post-infection. The protective effect of NTZ on the JEV-infected mice was evaluated. FINDINGS: NTZ significantly inhibited the replication of JEV in cultured cells in a dose dependent manner with 50% effective concentration value of 0.12 ± 0.04 µg/ml, a non-toxic concentration in cultured cells (50% cytotoxic concentration = 18.59 ± 0.31 µg/ml). The chemotherapeutic index calculated was 154.92. The viral yields of the NTZ-treated cells were significantly reduced at 12, 24, 36 and 48 h post-infection compared with the mock-treated cells. NTZ was found to exert its anti-JEV effect at the early-mid stage of viral infection. The anti-JEV effect of NTZ was also demonstrated in vivo, where 90% of mice that were treated by daily intragastric administration of 100 mg/kg/day of NTZ were protected from a lethal challenge dose of JEV. CONCLUSIONS: Both in vitro and in vivo data indicated that NTZ has anti-JEV activity, suggesting the potential application of NTZ in the treatment of Japanese encephalitis.


Assuntos
Antivirais/farmacologia , Antivirais/uso terapêutico , Vírus da Encefalite Japonesa (Espécie)/efeitos dos fármacos , Encefalite Japonesa/tratamento farmacológico , Encefalite Japonesa/virologia , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Animais , Linhagem Celular , Cricetinae , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Nitrocompostos , Análise de Sobrevida , Resultado do Tratamento , Carga Viral , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA