Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Aging (Albany NY) ; 16(3): 2362-2384, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38284886

RESUMO

As one of the most common liver diseases, nonalcoholic fatty liver disease (NAFLD) affects almost one-quarter of the world's population. Although the prevalence of NAFLD is continuously rising, effective medical treatments are still inadequate. Radix Polygoni Multiflori (RPM) is a traditional Chinese herbal medicine. As a processed product of RPM, prepared Radix Polygoni Multiflori (PRPM) has been reported to have antioxidant and anti-inflammatory effects. This study investigated whether PRPM treatment could significantly improve NAFLD. We used recent literature, the Herb database and the SwissADME database to isolate the active compounds of PRPM. The OMIM, DisGeNET and GeneCards databases were used to isolate NAFLD-related target genes, and GO functional enrichment and KEGG pathway enrichment analyses were conducted. Moreover, PRPM treatment in NAFLD model mice was evaluated. The results indicate that the target genes are mainly enriched in the AMPK and de novo lipogenesis signaling pathways and that PRPM treatment improves NAFLD disease in model mice. Here, we found the potential benefits of PRPM against NAFLD and demonstrated in vivo and in vitro that PRPM and its ingredient emodin downregulate phosphorylated P38/P38, phosphorylated ERK1/2 and genes related to de novo adipogenesis signaling pathways and reduce lipid droplet accumulation. In conclusion, our findings revealed a novel therapeutic role for PRPM in the treatment of NAFLD and metabolic inflammation.


Assuntos
Medicamentos de Ervas Chinesas , Emodina , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Emodina/farmacologia , Emodina/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Gotículas Lipídicas , Transdução de Sinais
2.
Medicine (Baltimore) ; 102(50): e36538, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38115246

RESUMO

BACKGROUND: Currently, drug-induced liver injury (DILI) has become one of those public issues in society, which has added a huge burden to both the individuals and the society. In the current clinical stage, there are numerous drugs developed to treat this disease, and different drug treatment measures have been proven to achieve certain clinical efficacy in the corresponding randomized controlled trials. However, there are still many therapeutic drugs that have not been directly compared and studied. Therefore, it is difficult to directly compare the effectiveness and safety of various strategies for the treatment of DILI. In this regard, the present study collected the therapeutic efficacy of diverse treatments in DILI in recent years through network meta-analysis, evaluated and screened the existing optimal clinical therapeutic plan, and helped physicians formulate clinical therapeutic plans. METHODS: Databases, including the Chinese Journal Full-text Database, Wanfang Data Journal Paper Resources (Wangfang), VIP Chinese Science and Technology Journal Full-text Database, The Cochrane Library, PubMed, and EMBASE, were searched using keywords from inception to January 2023. Eligible randomized controlled trials were selected in line with eligibility criteria, and mesh meta-analysis of binary variables was carried out using Stata 16 software. CONCLUSION: In combination with alanine aminotransferase, aspartate aminotransferase, and total bilirubin, MI may be the intervention measure for minimizing alanine aminotransferase levels in patients after treatment. Besides, compound glycyrrhizin may be the intervention for minimizing aspartate aminotransferase levels in patients after treatment, and polyene phosphatidylcholine may be the intervention for minimizing total bilirubin levels in patients after treatment. Placebo is the potential intervention that has the least adverse reactions post-treatment, and RT has the second least adverse reactions. Moreover, hepatocyte growth-promoting factors may be the most effective intervention after treatment. RESULTS: To sum up, the present work compared the clinical effects of 13 liver protective drugs through meta-analysis and provided a systematic understanding of commonly used drugs for the treatment of DILI in clinical practice.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas , Humanos , Metanálise em Rede , Medicamentos de Ervas Chinesas/uso terapêutico , Bilirrubina , Substâncias Protetoras , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico
3.
Brain ; 146(10): 4191-4199, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37170631

RESUMO

COQ7 encodes a hydroxylase responsible for the penultimate step of coenzyme Q10 (CoQ10) biosynthesis in mitochondria. CoQ10 is essential for multiple cellular functions, including mitochondrial oxidative phosphorylation, lipid metabolism, and reactive oxygen species homeostasis. Mutations in COQ7 have been previously associated with primary CoQ10 deficiency, a clinically heterogeneous multisystemic mitochondrial disorder. We identified COQ7 biallelic variants in nine families diagnosed with distal hereditary motor neuropathy with upper neuron involvement, expending the clinical phenotype associated with defects in this gene. A recurrent p.Met1? change was identified in five families from Brazil with evidence of a founder effect. Fibroblasts isolated from patients revealed a substantial depletion of COQ7 protein levels, indicating protein instability leading to loss of enzyme function. High-performance liquid chromatography assay showed that fibroblasts from patients had reduced levels of CoQ10, and abnormal accumulation of the biosynthetic precursor DMQ10. Accordingly, fibroblasts from patients displayed significantly decreased oxygen consumption rates in patients, suggesting mitochondrial respiration deficiency. Induced pluripotent stem cell-derived motor neurons from patient fibroblasts showed significantly increased levels of extracellular neurofilament light protein, indicating axonal degeneration. Our findings indicate a molecular pathway involving CoQ10 biosynthesis deficiency and mitochondrial dysfunction in patients with distal hereditary motor neuropathy. Further studies will be important to evaluate the potential benefits of CoQ10 supplementation in the clinical outcome of the disease.


Assuntos
Doenças Mitocondriais , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Neurônios Motores/metabolismo , Mutação/genética , Ubiquinona/genética
4.
Phytother Res ; 37(4): 1293-1308, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36751854

RESUMO

Citrus peel has long been used in traditional medicine in Asia to treat common cold, dyspepsia, cough, and phlegm. Narirutin-a flavanone-7-O-glycoside-is the major flavonoid in citrus peel, and has anti-oxidative, anti-allergic, and anti-inflammatory activities. However, the anti-inflammatory mechanism of narirutin has not been fully elucidated. This study is aimed to investigate the effects of narirutin on the Nod-like receptor protein 3 (NLRP3)-mediated inflammatory response in vitro and in vivo, and determine the underlying mechanism. THP-1 differentiated macrophages and bone marrow-derived macrophages (BMDMs) were used for in vitro experiments, while dextran sulfate sodium (DSS)-induced colitis and alum-induced peritonitis mouse models were constructed to test inflammation in vivo. Narirutin suppressed secretion of interleukin (IL)-1ß and pyroptosis in lipopolysaccharide (LPS)/ATP-stimulated macrophages. Narirutin decreased the expression of NLRP3 and IL-1ß in the LPS-priming step through inhibition of NF-κB, MAPK and PI3K /AKT signaling pathways. Narirutin inhibited NLRP3-ASC interaction to suppress NLRP3 inflammasome assembly. Furthermore, oral administration of narirutin (300 mg/kg) alleviated inflammation symptoms in mice with peritonitis and colitis. These results suggest that narirutin exerts its anti-inflammatory activity by suppressing NLRP3 inflammasome activation via inhibition of the NLRP3 inflammasome priming processes and NLRP3-ASC interaction in macrophages.


Assuntos
Colite , Flavanonas , Peritonite , Animais , Camundongos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Flavanonas/farmacologia , Colite/induzido quimicamente , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Peritonite/metabolismo
5.
J Nutr Biochem ; 112: 109231, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36435287

RESUMO

Intestinal health is critical for the growth and development of humans and animals. Our previous study has demonstrated that indomethacin (IDMT) could induce intestinal injury in piglets, and N-acetylcysteine (NAC) supplementation contributed to alleviating intestinal injury induced by various stimuli. In this study, we investigated the mechanism of IDMT-induced cell death in IPEC-1 cell lines and explored the role of NAC by using transcriptomic and proteomic analyses. Results showed that cell viability was substantially reduced with the increasing concentrations of IDMT, whereas NAC significantly increased the survival rate of IPEC-1 cells regardless of its addition method. Transcriptomics and proteomics data indicated that terms, such as cell cycle, energy metabolism, and cell proliferation, were significantly enriched by Gene ontology and pathway analyses. Flow cytometer analysis showed that IDMT induced cell cycle arrest at G0/G1 phase. The expression of cell cycle regulatory proteins (CDK1, CCNA2, and CDC45) was decreased by IDMT stimulation. Importantly, NAC treatment repaired IDMT-induced mitochondrial dysfunction by increasing ATP production, decreasing oxygen consumption rate in non-mitochondrial O2 consumption, and increasing the red/green fluorescence ratio. IDMT stimulation significantly increased caspase-3 expression, which was partially reversed by NAC treatment. These results suggest that IDMT-induced cell death may be attributable to disturbance of the cell cycle processes, mitochondria dysfunction and apoptosis, and NAC could confer a protective effect by restoring the mitochondrial function and inhibiting the apoptosis pathway. This study provides a theoretical basis for the pathogenesis of IDMT-induced intestinal injury and guides the clinic application of NAC.


Assuntos
Acetilcisteína , Enterócitos , Humanos , Animais , Suínos , Acetilcisteína/farmacologia , Enterócitos/metabolismo , Transcriptoma , Indometacina/farmacologia , Proteômica , Apoptose
6.
Front Pharmacol ; 13: 926945, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059938

RESUMO

Dysregulated immune response plays a pivotal role in Ulcerative colitis. In lamina propria of inflammatory colonic mucosa, macrophages tend to polarize into M1 type and metabolically reprogram to aerobic glycolysis. PKM2 orchestrates glucose metabolic switch in macrophages, which tetramer has high pyruvate kinase activity, while which dimer mainly works as a protein kinase to stabilize HIF-1α and mediate anabolism. Shikonin is a potent PKM2 inhibitor derived from traditional Chinese medicine Arnebiae Radix with anti-inflammatory and anticarcinogen activities. However, it is unclear which conformation of PKM2 is inhibited by Shikonin, and whether this inhibition mediates pharmacological effect of Shikonin. In this study, we examined the efficacy of Shikonin on dextran sulfate sodium-induced mice colitis and determined the states of PKM2 aggregation after Shikonin treatment. Results showed that Shikonin dose-dependently alleviated mice colitis, down-regulated expression of F4/80, iNOS and CD86, decreased IFN-γ, IL-1ß, IL-6 and TNF-α, while increased IL-10 in mice colon. Furthermore, Shikonin suppressed the pyruvate, lactate production and glucose consumption, inhibited the pyruvate kinase activity and nuclear translocation of PKM2, and decreased both dimerization and tetramerization of PKM2 in macrophages. In vitro assay revealed that Shikonin bounded to PKM2 protein, inhibited the formation of both dimer and tetramer, while promoted aggregation of PKM2 macromolecular polymer. TEPP-46, an activator of PKM2 tetramerization, attenuated the ameliorative effect of Shikonin on disuccinimidyl suberate mice. In summary, Shikonin improved mice colitis, which mechanism may be mediated by inhibiting dimerization and tetramerization of PKM2, suppressing aerobic glycolysis reprogram, improving mitochondrial dynamic, and therefore alleviating inflammatory response of macrophages.

7.
Comput Struct Biotechnol J ; 20: 824-837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35126885

RESUMO

Since Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was identified in late 2019, the coronavirus disease 2019 (COVID-19) pandemic has challenged public health around the world. Currently, there is an urgent need to explore antiviral therapeutic targets and effective clinical drugs. In this study, we systematically summarized two main therapeutic strategies against COVID-19, namely drugs targeting the SARS-CoV-2 life cycle and SARS-CoV-2-induced inflammation in host cells. The development of above two strategies is implemented by repurposing drugs and exploring potential targets. A comprehensive summary of promising drugs, especially cytokine inhibitors, and traditional Chinese medicine (TCM), provides recommendations for clinicians as evidence-based medicine in the actual clinical COVID-19 treatment. Considering the emerging SARS-CoV-2 variants greatly impact the effectiveness of drugs and vaccines, we reviewed the appearance and details of SARS-CoV-2 variants for further perspectives in drug design, which brings updating clues to develop therapeutical agents against the variants. Based on this, the development of broadly antiviral drugs, combined with immunomodulatory, or holistic therapy in the host, is prior to being considered for therapeutic interventions on mutant strains of SARS-CoV-2. Therefore, it is highly acclaimed the requirements of the concerted efforts from multi-disciplinary basic studies and clinical trials, which improves the accurate treatment of COVID-19 and optimizes the contingency measures to emerging SARS-CoV-2 variants.

8.
Sci Rep ; 11(1): 1261, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441976

RESUMO

ß-Conglycinin (ß-CG), an anti-nutritional factor, is a major allergen in soybeans to induce intestinal dysfunction and diarrhea in neonatal animals, including piglets and human infants. This study with a piglet model determined the effects of N-acetylcysteine (NAC) on intestinal function and autophagy in response to ß-CG challenge. Twenty-four 12-day-old piglets (3.44 ± 0.28 kg), which had been weaned at 7 days of age and adapted for 5 days after weaning, were randomly allocated to the control, ß-CG, and ß-CG + NAC groups. Piglets in the control group were fed a liquid diet containing 10% casein, whereas those in the ß-CG and ß-CG + NAC groups were fed the basal liquid diets containing 9.5% casein and 0.5% ß-CG for 2 days. Thereafter, pigs in the ß-CG + NAC group were orally administrated with 50 mg (kg BW)-1 NAC for 3 days, while pigs in the other two groups were orally administrated with the same volume of sterile saline. NAC numerically reduced diarrhea incidence (- 46.2%) and the concentrations of hydrogen peroxide and malondialdehyde, but increased claudin-1 and intestinal fatty-acid binding protein (iFABP) protein abundances and activities of catalase and glutathione peroxidase in the jejunum of ß-CG-challenged piglets. Although ß-CG challenge decreased the villus height, villus height/crypt depth ratio, and mRNA levels of claudin-1 and occludin, no significant differences were observed in these indices between the control and ß-CG + NAC groups, suggesting the positive effects of NAC supplementation on intestinal mucosal barrier function. Moreover, NAC increased the concentrations of citrulline and D-xylose in the plasma, as well as the expression of genes for aquaporin (AQP) 3, AQP4, peptide transporter 1 (PepT1), sodium/glucose co-transporter-1 (SGLT-1), potassium inwardly-rectifying channel, subfamily J, member 13 (KCNJ13), and solute carrier family 1 member 1 (SLC1A1) in the jejunum, demonstrating that NAC augmented intestinal metabolic activity and absorptive function. Remarkably, NAC decreased Atg5 protein abundance and the LC3II/LC3I ratio (an indicator of autophagy) in the jejunum of ß-CG-challenged piglets. Taken together, NAC supplementation improved intestinal function and attenuated intestinal autophagy in ß-CG-challenged piglets.


Assuntos
Acetilcisteína/farmacologia , Alérgenos/toxicidade , Antígenos de Plantas/toxicidade , Autofagia/efeitos dos fármacos , Globulinas/toxicidade , Mucosa Intestinal/metabolismo , Proteínas de Armazenamento de Sementes/toxicidade , Proteínas de Soja/toxicidade , Suínos/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Mucosa Intestinal/patologia
9.
Acta Pharmacol Sin ; 42(2): 242-251, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32555442

RESUMO

Silent information regulator 1 (Sirt1) is a deacetylase, which plays an important role in the occurrence and development of diabetic nephropathy (DN). Our previous study shows that Yin yang 1 (YY1), a widely expressed zinc finger DNA/RNA-binding transcription factor, is a novel regulator of renal fibrosis in diabetic nephropathy. Since the activity of YY1 is regulated via acetylation and deacetylation modification, this study aimed to explore whether Sirt1-induced deacetylation of YY1 mediated high glucose (HG)-induced renal tubular epithelial-mesenchymal transition (EMT) and renal fibrosis in vivo and in vitro. We first confirmed that Sirt1 expression level was significantly decreased in the kidney of db/db mice and in HG-treated HK-2 cells. Diabetes-induced Sirt1 reduction enhanced the level of YY1 acetylation and renal tubular EMT. Then, we manipulated Sirt1 expression in vivo and in vitro by injecting resveratrol (50 mg·kg-1·d-1. ip) to db/db mice for 2 weeks or application of SRT1720 (2.5 µM) in HG-treated HK-2 cells, we found that activation of Sirt1 reversed the renal tubular EMT and YY1 acetylation induced by HG condition. On the contrary, Sirt1 was knocked down in db/m mice or EX527 (1 µM) was added in HK-2 cells, we found that inhibition of Sirt1 exacerbated renal fibrosis in diabetic mice and enhanced level of YY1 acetylation in HK-2 cells. Furthermore, knockdown of YY1 inhibited the ameliorating effect of resveratrol on renal tubular EMT and renal fibrosis in db/db mice. In conclusion, this study demonstrates that Sirt1 plays an important role in renal tubular EMT of DN through mediating deacetylation of YY1.


Assuntos
Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/fisiopatologia , Sirtuína 1/genética , Fator de Transcrição YY1/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Experimental/genética , Nefropatias Diabéticas/genética , Transição Epitelial-Mesenquimal/genética , Fibrose , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Masculino , Camundongos , Resveratrol/farmacologia , Fator de Transcrição YY1/genética
10.
Huan Jing Ke Xue ; 41(7): 3434-3440, 2020 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608918

RESUMO

To explore the safe utilization of technology in mildly and moderately cadmium (Cd)-contaminated farmland and realize the safe production of agricultural products, two different cadmium-accumulating genotypes of Tsai-tai were used as test crops, using the pot experiment method. The same six treatments were set on the soil where the two test crops were planted:control (CK), addition of 3% (mass fraction) biochar (BC), addition of 0.17% calcium magnesium phosphate fertilizers (CMP), foliar application of 3 mg·L-1 Na2SeO3 aqueous solution (Se), BC+Se, and CMP+Se, to study the changes in available cadmium in soil under different treatments and the characteristics of cadmium accumulation in different parts of the plant. The results showed that:① Under the same treatment, the content of available cadmium in soil near the root of the low-cadmium-accumulating genotype of Tsai-tai of Jinqiuhong Ⅲ was significantly lower than that of the high-cadmium-accumulating genotype of Shiyuehong. BC and CMP had a significant passivating effect on cadmium in the soil near the root of Jinqiuhong Ⅲ, and the passivating effect of BC was better than that of CMP; the effect of passivating treatment was significantly better than that of foliar application of selenium. ② The root system of Tsai-tai of Jinqiuhong Ⅲ had a stronger ability to accumulate cadmium than that of Shiyuehong, and the accumulated cadmium tended to be stored in the root. There were no synergistic effects between the foliar application of selenium and the two kinds of passivants on inhibiting the transfer and enrichment of cadmium to the edible parts of Tsai-tai. ③ Under the treatments of BC and CMP, the content of cadmium in the edible part of Tsai-tai of Jinqiuhong Ⅲ was lower than the limit value of cadmium in GB 2762-2017 (0.10 mg·kg-1). This study shows that for mildly and moderately cadmium-contaminated farmland, applying green passivants such as biochar, calcium magnesium phosphate fertilizers, and planting crops with weak absorption and low accumulation can achieve the safe use of the cadmium-contaminated farmland and safe production of agricultural products.


Assuntos
Oryza , Selênio , Poluentes do Solo/análise , Cádmio/análise , Genótipo , Solo
11.
Appl Microbiol Biotechnol ; 104(10): 4321-4332, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32232531

RESUMO

Separation and enrichment of phenolics from peony flowers were performed to improve the anti-biofilm and antibacterial activities for the first time. Through several times of separation, the purity of phenolics components increased significantly, and the anti-biofilm and antibacterial activities of phenolics components against E. coli and S. aureus were also significantly improved. Finally, the phenolics of peony flowers in the eluent of silica gel column chromatography (PPF-ESGCC) were found to exhibit the highest anti-biofilm and antibacterial activities. The inhibition rates of PPF-ESGCC on biofilms of E. coli and S. aureus were 77.93%, and 87.03% respectively, at a very low concentration (1/2 MIC, 0.235 mg/mL). It was found that the biofilm inhibition was achieved by inhibiting their swimming, swarming, twitching motilities, exopolysaccharide (EPS) production, and quorum sensing (QS). Moreover, there was a positive dose-dependent relationship (r = 0.75 to 1) between the inhibition rates and concentrations of PPF-ESGCC during the critical biofilm-formation stage (1-3 days). Chemical composition analysis showed the PPF-ESGCC comprised of gallic acid, kaempferol-7-O-glucoside, and apigenin-7-O-glucoside. In conclusion, PPF-ESGCC exhibited strong inhibitory effect on biofilm formation and gallic acid, kaempferol-7-O-glucoside, and apigenin-7-O-glucoside might play a crucial role in inhibiting biofilm formation. Meanwhile, this study indicated that PPF-ESGCC, a new natural QS inhibitor and biofilm inhibitor, could be used as a novel intervention strategy to enhance the safety and quality of food.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Paeonia/química , Fenóis/farmacologia , Flores/química , Testes de Sensibilidade Microbiana , Fenóis/isolamento & purificação , Percepção de Quorum/efeitos dos fármacos
12.
Biomaterials ; 232: 119668, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31927179

RESUMO

Mitophagy is a specific self-protective autophagic process that degrades damaged or dysfunctional mitochondria, and is generally considered to reduce the effectiveness of mitochondria-targeted therapies. Here, we report an energy depletion-based anticancer strategy by selectively activating excessive mitophagy in cancer cells. We fabricate a type of mitochondria-targeting nanomicelles via the self-assembly of D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and dc-IR825 (a near-infrared cyanine dye and a photothermal agent). The TPGS/dc-IR825 nanomicelles enable mitochondrial damage in cancer cells, which, for self-protection, activate two autophagic pathways, (1) mitophagy and (2) adenosine triphosphate (ATP) shortage-triggered autophagy. However, the excessive mitophagy/autophagy activities far surpass the degradative capacity of autolysosomes, leading to the formation of micrometer-sized vacuoles and degradation blockage. Immunofluorescence staining and Western blot analysis reveal that the nanomicelle-treated cancer cells are under severe ATP shortage, which eventually causes substantial cell death. Moreover, the nanomicelles intravenously injected into tumor-bearing mice show high tumor accumulation, long tumor retention, and inhibit the tumor growth by inducing excessive mitophagy/autophagy and energy depletion in tumor cells. Additional near-infrared laser irradiation treatment further enhances the in vitro and in vivo anticancer efficiencies of the nanomicelles, due to the excellent photothermal and photodynamic effects of dc-IR825. We believe that this work highlights the important role of mitophagy/autophagy in treating cancers.


Assuntos
Mitofagia , Nanoestruturas , Neoplasias , Fototerapia , Animais , Autofagia , Lisossomos/metabolismo , Camundongos , Micelas , Mitocôndrias , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
13.
Environ Pollut ; 220(Pt B): 997-1004, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27876416

RESUMO

Extracellular polymeric substances (EPS) isolated from bacteria, are abound of functional groups which can react with metals and consequently influence the immobilization of metals. In this study, we combined with Zn K-edge Extended X-ray Absorption Fine Structure (EXAFS), Fourier Transform Infrared (FTIR) spectroscopy, and High-Resolution Transmission Electron Microscopy (HRTEM) techniques to study the effects of EPS isolated from Bacillus subtilis and Pseudomonas putida on Zn sorption on γ-alumina. The results revealed that Zn sorption on aluminum oxide was pH-dependent and significantly influenced by bacterial EPS. At pH 7.5, Zn sorbed on γ-alumina was in the form of Zn-Al layered doubled hydroxide (LDH) precipitates, whereas at pH 5.5, Zn sorbed on γ-alumina was as a Zn-Al bidentate mononuclear surface complex. The amount of sorbed Zn at pH 7.5 was 1.3-3.7 times higher than that at pH 5.5. However, in the presence of 2 g L-1 EPS, regardless of pH conditions and EPS source, Zn + EPS + γ-alumina ternary complex was formed on the surface of γ-alumina, which resulted in decreased Zn sorption (reduced by 8.4-67.8%) at pH 7.5 and enhanced Zn sorption (increased by 10.0-124.7%) at pH 5.5. The FTIR and EXAFS spectra demonstrated that both the carboxyl and phosphoryl moieties of EPS were crucial in this process. These findings highlight EPS effects on Zn interacts with γ-alumina.


Assuntos
Óxido de Alumínio/química , Zinco/química , Adsorção , Bacillus subtilis/química , Concentração de Íons de Hidrogênio , Hidróxidos , Polímeros/química , Pseudomonas putida/química , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia por Absorção de Raios X
14.
Artigo em Chinês | MEDLINE | ID: mdl-23072146

RESUMO

The killing effect of different concentrations of garlic extract solution on Schistosoma japonicum cercariae and Oncomelania snails was observed under dissecting microscope. Mice were infected by cercariae through the abdominal skin daubed by garlic solution or by deionized water as control. The results showed that the cercariae were killed in (77.33 +/- 25.01) s in average, it needed (73.00 +/- 1.73)- (299.67 +/- 18.96) s under the garlic solution concentrations of 50.00%-0.79% respectively, while the cercariae kept alive in 600 s in the control. The snails were killed in 1 d by 100% garlic solution but no death in the control in 2 d. No mouse daubed with different concentrations of garlic solution was found infected by schistosomes while 100% of the control mice got infected. It is concluded that the garlic shows satisfactory effect in killing cercariae and Oncomelania snails, and may prevent schistosome infection by daubing the skin.


Assuntos
Cercárias/efeitos dos fármacos , Alho/química , Extratos Vegetais/farmacologia , Schistosoma japonicum/efeitos dos fármacos , Caramujos/efeitos dos fármacos , Animais , Camundongos , Esquistossomose Japônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA