RESUMO
BACKGROUND: BCR-ABL1-based resistance to imatinib, mainly resulting from BCR-ABL1 mutations, is largely solved after second- and third-generation tyrosine kinase inhibitors (TKIs) are discovered. Nonetheless, imatinib resistance without BCR-ABL1 mutations, including intrinsic resistance induced by stem cells within chronic myeloid leukemia (CML), remains the major clinical challenge for many patients. PURPOSE: To study the key active ingredients and corresponding target proteins in Huang-Lian-Jie-Du-Tang (HLJDT) against BCR-ABL1-independent CML resistance to therapeutics, and then explore its mechanism of against CML drug resistance. METHODS: Cytotoxicity of HLJDT and its active ingredients in BCR-ABL1-independent imatinib resistance cells was analyzed through MTT assay. The cloning ability was measured through soft agar assay. Monitoring therapeutic effect on Xenografted mice CML model by in vivo imaging technology and mice survival time. Predicting the potential target protein binding sites by the technology of photocrosslinking sensor chip, molecular space simulation docking, and use Surface Plasmon Resonance (SPR) technology . Flow cytometry to detect the ratio of stem progenitor cells (CD34+). Constructing bone marrow transplantation mice CML leukemia model, detect the effects on leukemia stem cells LSK (Lin-\ Sca-1+ \C-kit+) self-renewal. RESULTS: Treatment with HLJDT, berberine and baicalein inhibited cell viability and colony formation of BCR-ABL1-independent imatinib-resistant cells in vitro while prolonging survival in mouse with CML xenografts and transplatation CML-like mouse models in vivo. JAK2 and MCL1were identified as targets of berberine and baicalein. JAK2 and MCL1 are involved in multi-leukemia stem cell-related pathways. Moreover, the ratio of CD34+ cells in resistant CML cells is higher than in treatment-sensitive CML cells. Treatment with BBR or baicalein partially suppressed CML leukemic stem cells (LSCs) self-renewal in vitro and in vivo. CONCLUSION: From the above, we concluded that HLJDT and its key active ingredients (BBR and baicalein) allowed to overcome imatinib resistance with BCR-ABL1 independent by eradication of LSCs by targeting the JAK2 and MCL1 protein levels. Our results lay the foundation for applying HLJDT in patients with TKI-resistant CML.
Assuntos
Berberina , Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Berberina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Células-TroncoRESUMO
Recent studies have suggested the potency of berberine (BBR) for multiple cancer treatments, including multiple myeloma (MM). However, the direct target and underlying mechanism of BBR remain largely understood in MM. Here, we demonstrated that BBR inhibited cell proliferation and acted synergistically with bortezomib in MM.1S cells. BBR treatment induced MM cell cycle arrest by downregulating several cell cycle-related proteins. Murine double minute 2 (MDM2) as a BBR-binding protein was identified by surface plasmon resonance image (SPRi) analysis and molecular docking. Overexpression of MDM2 is associated with MM progression and a poor prognosis. Knockdown MDM2 by siRNA transfection can repress MM malignant progression and attenuate the BBR sensitivity to MM.1S cells. BBR treatment induced the degradation of MDM2 through the ubiquitin-proteasome system and reactivated P53/P21 in MM cells. Overall, our data has illustrated that MDM2, as a binding protein of BBR for the first time, may serve as a potential therapeutic option for MM.
Assuntos
Berberina , Mieloma Múltiplo , Animais , Apoptose , Berberina/farmacologia , Berberina/uso terapêutico , Bortezomib/metabolismo , Carcinogênese , Linhagem Celular Tumoral , Humanos , Camundongos , Simulação de Acoplamento Molecular , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Interferente Pequeno , Proteína Supressora de Tumor p53/genética , UbiquitinaRESUMO
OBJECTIVE: Individuals with higher neuroticism are vulnerable to stress and are prone to develop depression, however, the neural mechanisms underlying it have not been clarified clearly. METHOD: The Montreal Imaging Stress Task (MIST) was administered to 148 healthy adults during functional magnetic resonance imaging (fMRI). Whole-brain voxel-wise regression analyses were used to detect associations of neuroticism with neural activity involved in perceiving and processing psychosocial stress. In addition, two-sample t-tests were conducted between the high-neurotic and low-neurotic group in order to supplement the results found in regression analyses. RESULTS: Higher neuroticism scores were associated with higher activities in the posterior cingulate cortex (PCC)/precuneus and thalamus (p < 0.05, false discovery rate correction). Moreover, two sample t-tests also revealed that the high-neurotic group had higher neural stress responses in precuneus and bilateral thalamus in comparison to the low-neurotic group (p < 0.05, false discovery rate correction). LIMITATIONS: Our study mainly recruited young adults, which may limit the generalizability of our findings. CONCLUSIONS: Our findings highlight the crucial role of PCC/precuneus and thalamus in the association between neuroticism and stress and may provide insight into the cognitive model of depression.
Assuntos
Giro do Cíngulo/fisiopatologia , Neuroticismo/fisiologia , Estresse Fisiológico/fisiologia , Estresse Psicológico/fisiopatologia , Tálamo/fisiopatologia , Feminino , Giro do Cíngulo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Análise de Regressão , Estresse Psicológico/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Adulto JovemRESUMO
Several types of microRNA (miRNA) overexpression in the brain are associated with stress. One of the targets of miR-34c is the stress-related corticotrophin releasing factor receptor 1 mRNA (CRFR1 mRNA). Here we will probe into the short-term effect and long-term effect of early adolescent traumatic stress on the expression of miR-34c and CRFR1 mRNA. Traumatic stress was established by electric foot shock for six consecutive days using 28-day rats. The anxiety-like behaviors, memory damage, CRFR1 protein, CRFR1 mRNA, and miR-34c expression were detected in our study. The results of our study proved that exposure to acute traumatic stress in early adolescent can cause permanent changes in neural network, resulting in dysregulation of CRFR1 expression and CRFR1 mRNA and miR-34c expression in hypothalamus, anxiety-like behavior, and memory impairment, suggesting that the miR-34c expression in hypothalamus may be an important factor involved in susceptibility to PTSD.