Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 128: 155432, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518645

RESUMO

BACKGROUND: Cancer, the second leading cause of death worldwide following cardiovascular diseases, presents a formidable challenge in clinical settings due to the extensive toxic side effects associated with primary chemotherapy drugs employed for cancer treatment. Furthermore, the emergence of drug resistance against specific chemotherapeutic agents has further complicated the situation. Consequently, there exists an urgent imperative to investigate novel anticancer drugs. Steroidal saponins, a class of natural compounds, have demonstrated notable antitumor efficacy. Nonetheless, their translation into clinical applications has remained unrealized thus far. In light of this, we conducted a comprehensive systematic review elucidating the antitumor activity, underlying mechanisms, and inherent limitations of steroidal saponins. Additionally, we propose a series of strategic approaches and recommendations to augment the antitumor potential of steroidal saponin compounds, thereby offering prospective insights for their eventual clinical implementation. PURPOSE: This review summarizes steroidal saponins' antitumor activity, mechanisms, and limitations. METHODS: The data included in this review are sourced from authoritative databases such as PubMed, Web of Science, ScienceDirect, and others. RESULTS: A comprehensive summary of over 40 steroidal saponin compounds with proven antitumor activity, including their applicable tumor types and structural characteristics, has been compiled. These steroidal saponins can be primarily classified into five categories: spirostanol, isospirostanol, furostanol, steroidal alkaloids, and cholestanol. The isospirostanol and cholestanol saponins are found to have more potent antitumor activity. The primary antitumor mechanisms of these saponins include tumor cell apoptosis, autophagy induction, inhibition of tumor migration, overcoming drug resistance, and cell cycle arrest. However, steroidal saponins have limitations, such as higher cytotoxicity and lower bioavailability. Furthermore, strategies to address these drawbacks have been proposed. CONCLUSION: In summary, isospirostanol and cholestanol steroidal saponins demonstrate notable antitumor activity and different structural categories of steroidal saponins exhibit variations in their antitumor signaling pathways. However, the clinical application of steroidal saponins in cancer treatment still faces limitations, and further research and development are necessary to advance their potential in tumor therapy.


Assuntos
Antineoplásicos Fitogênicos , Saponinas , Esteroides , Saponinas/farmacologia , Saponinas/química , Saponinas/uso terapêutico , Humanos , Esteroides/farmacologia , Esteroides/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Neoplasias/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos
2.
Cancers (Basel) ; 14(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35406384

RESUMO

Yin Yang 1 (YY1) plays an oncogenic role through regulating the expression of various cancer-related genes and activating key oncoproteins. Previous research reported that YY1 protein formed dimers or oligomers without definite biological implications. In this study, we first demonstrated the oncoprotein binding (OPB) and zinc finger (ZF) domains of YY1 as the regions involved in its intermolecular interactions. ZFs are well-known for protein dimerization, so we focused on the OPB domain. After mutating three hydrophobic residues in the OPB to alanines, we discovered that YY1(F219A) and YY1(3A), three residues simultaneously replaced by alanines, were defective of intermolecular interaction. Meanwhile, the OPB peptide could robustly facilitate YY1 protein oligomerization. When expressed in breast cancer cells with concurrent endogenous YY1 knockdown, YY1(F219A) and (3A) mutants showed better capacity than wt in promoting cell proliferation and migration, while their interactions with EZH2, AKT and MDM2 showed differential alterations, especially with improved EZH2 binding affinity. Our study revealed a crucial role of the OPB domain in facilitating YY1 oligomerization and suggested a mutually exclusive regulation between YY1-mediated enhancer formation and its activities in promoting oncoproteins.

3.
Nucleic Acids Res ; 50(9): 4917-4937, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35390165

RESUMO

As an oncogenic transcription factor, Yin Yang 1 (YY1) regulates enhancer and promoter connection. However, gaps still exist in understanding how YY1 coordinates coactivators and chromatin enhancer elements to assemble enhancers and super-enhancers. Here, we demonstrate that a histidine cluster in YY1's transactivation domain is essential for its formation of phase separation condensates, which can be extended to additional proteins. The histidine cluster is also required for YY1-promoted cell proliferation, migration, clonogenicity and tumor growth. YY1-rich nuclear puncta contain coactivators EP300, BRD4, MED1 and active RNA polymerase II, and colocalize with histone markers of gene activation, but not that of repression. Furthermore, YY1 binds to the consensus motifs in the FOXM1 promoter to activate its expression. Wild-type YY1, but not its phase separation defective mutant, connects multiple enhancer elements and the FOXM1 promoter to form an enhancer cluster. Consistently, fluorescent in situ hybridization (FISH) assays reveal the colocalization of YY1 puncta with both the FOXM1 gene locus and its nascent RNA transcript. Overall, this study demonstrates that YY1 activates target gene expression through forming liquid-liquid phase separation condensates to compartmentalize both coactivators and enhancer elements, and the histidine cluster of YY1 plays a determinant role in this regulatory mechanism.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Fator de Transcrição YY1 , Regulação da Expressão Gênica , Histidina/química , Hibridização in Situ Fluorescente , Proteínas Nucleares/metabolismo , Fator de Transcrição YY1/química , Fator de Transcrição YY1/metabolismo
4.
Cancers (Basel) ; 13(10)2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-34065631

RESUMO

Enhancer of zeste homolog 2 (EZH2) is a methyltransferase to mediate lysine 27 trimethylation in histone H3 (i.e., H3K27me3) and repress gene expression. In solid tumors, EZH2 promotes oncogenesis and is considered a therapeutic target. As a transcription factor, Yin Yang 1 (YY1) recruits EZH2 through its oncoprotein binding (OPB) domain to establish gene repression. In this study, we mapped the YY1 protein binding (YPB) domain on EZH2 to a region of 27 amino acids. Both YPB and OPB domain synthetic peptides could disrupt YY1EZH2 interaction, markedly reduce breast cancer cell viability, and efficiently inhibit tumor growth in a xenograft mouse model. We analyzed MDA-MB-231 cells treated with YPB, OPB, and control peptides by chromatin immunoprecipitation DNA sequencing (ChIP-seq) using an antibody against H3K27me3. YPB and OPB treatments altered H3K27me3 on 465 and 1137 genes, respectively, compared to the control. Of these genes, 145 overlapped between the two peptides. Among them, PTENP1, the PTEN pseudogene, showed reduced H3K27me3 signal when treated by either YPB or OPB peptide. Consistently, the two peptides enhanced both PTENP1 and PTEN expression with concomitantly reduced AKT activation. Further studies validated PTENP1's contribution to the anticancer activity of YPB and OPB peptides.

5.
FEBS Lett ; 593(12): 1392-1402, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31127623

RESUMO

As a transcription factor, Yin Yang 1 (YY1) either activates or represses gene expression depending on its recruited cofactors. The YY1 C-terminal consists of four zinc fingers (ZF) that are responsible for its DNA binding. However, the contribution of each YY1 ZF to its functions have not been fully elucidated. In this study, we used alanines to replace YY1 cysteines that are crucial to ZFs in binding to DNA. We characterized these YY1 mutants for their DNA binding, transcriptional activity, and functional role in maintaining MDA-MB-231 cell proliferation. We demonstrated that ZFs 2 and 3 are essential to the general biological activity of YY1. ZF 1 showed relatively low importance, while ZF 4 is virtually dispensable for YY1 function.


Assuntos
Cisteína/fisiologia , Mutagênese , Fator de Transcrição YY1/fisiologia , Dedos de Zinco , Células HeLa , Humanos , Fator de Transcrição YY1/química
6.
Curr Cancer Drug Targets ; 19(6): 504-511, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30381079

RESUMO

BACKGROUND: The oncoprotein binding (OPB) domain of Yin Yang 1 (YY1) consists of 26 amino acids between G201 and S226, and is involved in YY1 interaction with multiple oncogene products, including MDM2, AKT, EZH2 and E1A. Through the OPB domain, YY1 promotes the oncogenic or proliferative regulation of these oncoproteins in cancer cells. We previously demonstrated that a peptide with the OPB sequence blocked YY1-AKT interaction and inhibited breast cancer cell proliferation. OBJECTIVE: In the current study, we characterized the OPB domain and determined a minimal region for peptide design to suppress cancer cells. METHODS: Using alanine-scan method, we identified that the amino acids at OPB C-terminal are essential to YY1 binding to AKT. Further studies suggested that serine and threonine residues, but not lysines, in OPB play a key role in YY1-AKT interaction. We generated GFP fusion expression vectors to express OPB peptides with serially deleted N-terminal and found that OPB1 (i.e. G201-S226) is cytoplasmic, but OPB2 (i.e. E206-S226), OPB3 (i.e. E206-S226) and control peptide were both nuclear and cytoplasmic. RESULTS: Both OPB1 and 2 inhibited breast cancer cell proliferation and migration, but OPB3 exhibited similar effects to control. OPB1 and 2 caused cell cycle arrest at G1 phase, increased p53 and p21 expression, and reduced AKT(S473) phosphorylation in MCF-7 cells, but not in MDA-MB-231 cells. CONCLUSION: Overall, the serines and threonines of OPB are essential to YY1 binding to oncoproteins, and OPB peptide can be minimized to E206-S226 that maintain inhibitory activity to YY1- promoted cell proliferation.


Assuntos
Analgésicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição YY1/química , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Fragmentos de Peptídeos/química , Fosforilação , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Homologia de Sequência , Transdução de Sinais , Células Tumorais Cultivadas , Fator de Transcrição YY1/metabolismo
7.
Crit Rev Oncog ; 22(1-2): 1-11, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29604932

RESUMO

Yin Yang 1 (YY1) is a member of the GLI-Kruppel family of zinc finger proteins that plays vital roles in many biological processes, especially tumorigenesis. To date, ample evidence suggests a critical regulatory role of YY1 in tumor cell metastasis. The potential of YY1 as a valuable biomarker for cancer metastasis has been increasingly known. Here, we review the studies related to the expression, regulatory network, and clinical application of YY1 in cancer metastasis. We first summarize YY1 expression patterns in metastatic tumors. We then elaborate YY1-regulated mechanisms on five aspects, including epithelial-mesenchymal transition, cell migration and invasion, stemness, polyploidy, and genomic stability. Finally, we discuss the correlation between YY1 expression and clinical outcomes and therapeutic potential of YY1 in cancer treatment. Based on this review, we conclude that YY1 is a bona fide inducer of cancer metastasis and can serve as a clinical biomarker and therapeutic target for cancer treatment.


Assuntos
Carcinogênese/genética , Proliferação de Células/genética , Neoplasias/genética , Fator de Transcrição YY1/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica , Neoplasias/patologia , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA